Cargando…
Elucidating the potential of crude cell extracts for producing pyruvate from glucose
Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445776/ https://www.ncbi.nlm.nih.gov/pubmed/32995514 http://dx.doi.org/10.1093/synbio/ysy006 |
_version_ | 1783574046757093376 |
---|---|
author | Garcia, David C Mohr, Benjamin P Dovgan, Jakob T Hurst, Gregory B Standaert, Robert F Doktycz, Mitchel J |
author_facet | Garcia, David C Mohr, Benjamin P Dovgan, Jakob T Hurst, Gregory B Standaert, Robert F Doktycz, Mitchel J |
author_sort | Garcia, David C |
collection | PubMed |
description | Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products. |
format | Online Article Text |
id | pubmed-7445776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-74457762020-09-28 Elucidating the potential of crude cell extracts for producing pyruvate from glucose Garcia, David C Mohr, Benjamin P Dovgan, Jakob T Hurst, Gregory B Standaert, Robert F Doktycz, Mitchel J Synth Biol (Oxf) Research Article Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products. Oxford University Press 2018-05-14 /pmc/articles/PMC7445776/ /pubmed/32995514 http://dx.doi.org/10.1093/synbio/ysy006 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Garcia, David C Mohr, Benjamin P Dovgan, Jakob T Hurst, Gregory B Standaert, Robert F Doktycz, Mitchel J Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title | Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title_full | Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title_fullStr | Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title_full_unstemmed | Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title_short | Elucidating the potential of crude cell extracts for producing pyruvate from glucose |
title_sort | elucidating the potential of crude cell extracts for producing pyruvate from glucose |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445776/ https://www.ncbi.nlm.nih.gov/pubmed/32995514 http://dx.doi.org/10.1093/synbio/ysy006 |
work_keys_str_mv | AT garciadavidc elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose AT mohrbenjaminp elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose AT dovganjakobt elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose AT hurstgregoryb elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose AT standaertrobertf elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose AT doktyczmitchelj elucidatingthepotentialofcrudecellextractsforproducingpyruvatefromglucose |