Cargando…
On strongly primary monoids and domains
A commutative integral domain is primary if and only if it is one-dimensional and local. A domain is strongly primary if and only if it is local and each nonzero principal ideal contains a power of the maximal ideal. Hence, one-dimensional local Mori domains are strongly primary. We prove among othe...
Autores principales: | Geroldinger, Alfred, Roitman, Moshe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446044/ https://www.ncbi.nlm.nih.gov/pubmed/32939190 http://dx.doi.org/10.1080/00927872.2020.1755678 |
Ejemplares similares
-
On transfer homomorphisms of Krull monoids
por: Geroldinger, Alfred, et al.
Publicado: (2021) -
A characterization of seminormal C-monoids
por: Geroldinger, Alfred, et al.
Publicado: (2019) -
Products of two atoms in Krull monoids and arithmetical characterizations of class groups()
por: Baginski, Paul, et al.
Publicado: (2013) -
Linear Algebraic Monoids
por: Renner, Lex E
Publicado: (2005) -
Linear algebraic monoids
por: Putcha, Mohan S
Publicado: (1988)