Cargando…
Machine learning models predicting multidrug resistant urinary tract infections using “DsaaS”
BACKGROUND: The scope of this work is to build a Machine Learning model able to predict patients risk to contract a multidrug resistant urinary tract infection (MDR UTI) after hospitalization. To achieve this goal, we used different popular Machine Learning tools. Moreover, we integrated an easy-to-...
Autores principales: | Mancini, Alessio, Vito, Leonardo, Marcelli, Elisa, Piangerelli, Marco, De Leone, Renato, Pucciarelli, Sandra, Merelli, Emanuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446147/ https://www.ncbi.nlm.nih.gov/pubmed/32838752 http://dx.doi.org/10.1186/s12859-020-03566-7 |
Ejemplares similares
-
Topolnogical classifier for detecting the emergence of epileptic seizures
por: Piangerelli, Marco, et al.
Publicado: (2018) -
1697. The Burden Of Multidrug-Resistant Urinary Tract Infections
por: Hammami, Fatma, et al.
Publicado: (2020) -
Predicting urinary tract infections in the emergency department with machine learning
por: Taylor, R. Andrew, et al.
Publicado: (2018) -
Combination Therapy for Multidrug-Resistant Klebsiella Pneumoniae Urinary Tract Infection
por: Yasin, Faizan, et al.
Publicado: (2017) -
Risk factors of multidrug-resistant bacteria in community-acquired urinary tract infections
por: Guclu, Ertugrul, et al.
Publicado: (2021)