Cargando…

CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuang, van der Velde, K. Joeri, de Ridder, Dick, van Dijk, Aalt D. J., Soudis, Dimitrios, Zwerwer, Leslie R., Deelen, Patrick, Hendriksen, Dennis, Charbon, Bart, van Gijn, Marielle E., Abbott, Kristin, Sikkema-Raddatz, Birgit, van Diemen, Cleo C., Kerstjens-Frederikse, Wilhelmina S., Sinke, Richard J., Swertz, Morris A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446154/
https://www.ncbi.nlm.nih.gov/pubmed/32831124
http://dx.doi.org/10.1186/s13073-020-00775-w
Descripción
Sumario:Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice.