Cargando…
Visual Interpretability in Computer-Assisted Diagnosis of Thyroid Nodules Using Ultrasound Images
BACKGROUND: The number of studies on deep learning in artificial intelligence (AI)-assisted diagnosis of thyroid nodules is increasing. However, it is difficult to explain what the models actually learn in artificial intelligence-assisted medical research. Our aim is to investigate the visual interp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446277/ https://www.ncbi.nlm.nih.gov/pubmed/32798214 http://dx.doi.org/10.12659/MSM.927007 |
Sumario: | BACKGROUND: The number of studies on deep learning in artificial intelligence (AI)-assisted diagnosis of thyroid nodules is increasing. However, it is difficult to explain what the models actually learn in artificial intelligence-assisted medical research. Our aim is to investigate the visual interpretability of the computer-assisted diagnosis of malignant and benign thyroid nodules using ultrasound images. MATERIAL/METHODS: We designed and implemented 2 experiments to test whether our proposed model learned to interpret the ultrasound features used by ultrasound experts to diagnose thyroid nodules. First, in an anteroposterior/transverse (A/T) ratio experiment, multiple models were trained by changing the A/T ratio of the original nodules, and their classification, accuracy, sensitivity, and specificity were tested. Second, in a visualization experiment, class activation mapping used global average pooling and a fully connected layer to visualize the neural network to show the most important features. We also examined the importance of data preprocessing. RESULTS: The A/T ratio experiment showed that after changing the A/T ratio of the nodules, the accuracy of the neural network model was reduced by 9.24–30.45%, indicating that our neural network model learned the A/T ratio information of the nodules. The visual experiment results showed that the nodule margins had a strong influence on the prediction of the neural network. CONCLUSIONS: This study was an active exploration of interpretability in the deep learning classification of thyroid nodules. It demonstrated the neural network-visualized model focused on irregular nodule margins and the A/T ratio to classify thyroid nodules. |
---|