Cargando…

Structure aware Runge–Kutta time stepping for spacetime tents

We introduce a new class of Runge–Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge–Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin)...

Descripción completa

Detalles Bibliográficos
Autores principales: Gopalakrishnan, Jay, Schöberl, Joachim, Wintersteiger, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446293/
https://www.ncbi.nlm.nih.gov/pubmed/32879914
http://dx.doi.org/10.1007/s42985-020-00020-4
Descripción
Sumario:We introduce a new class of Runge–Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge–Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin) discretizations are used. After presenting a derivation of nonstandard order conditions for these methods, we show numerical examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates. We also report on the discrete stability properties of these methods applied to linear hyperbolic equations.