Cargando…

A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)

The main objective of the study was to analyze deviations in retinal nerve fiber layer (RNFL) thickness measurements caused by the displacement of circular optic disc optical coherence tomography scans. High-density radial scans of the optic nerve heads of cynomolgus monkeys were acquired. The retin...

Descripción completa

Detalles Bibliográficos
Autores principales: Niklaus, Stephanie, Hasler, Pascal W., Bryant, Timothy, Desgent, Sébastien, Vezina, Mark, Schnitzer, Tobias K., Maloca, Peter M., Denk, Nora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446827/
https://www.ncbi.nlm.nih.gov/pubmed/32822382
http://dx.doi.org/10.1371/journal.pone.0237858
_version_ 1783574195881377792
author Niklaus, Stephanie
Hasler, Pascal W.
Bryant, Timothy
Desgent, Sébastien
Vezina, Mark
Schnitzer, Tobias K.
Maloca, Peter M.
Denk, Nora
author_facet Niklaus, Stephanie
Hasler, Pascal W.
Bryant, Timothy
Desgent, Sébastien
Vezina, Mark
Schnitzer, Tobias K.
Maloca, Peter M.
Denk, Nora
author_sort Niklaus, Stephanie
collection PubMed
description The main objective of the study was to analyze deviations in retinal nerve fiber layer (RNFL) thickness measurements caused by the displacement of circular optic disc optical coherence tomography scans. High-density radial scans of the optic nerve heads of cynomolgus monkeys were acquired. The retinal nerve fiber layer was manually segmented, and a surface plot of the discrete coordinates was generated. From this plot, the RNFL thicknesses were calculated and compared between accurately centered and intentionally displaced circle scans. Circle scan displacement caused circumpapillary retinal nerve fiber layer thickness deviations of increasing magnitude with increasing center offset. As opposed to the human eye, horizontal displacement resulted in larger RNFL thickness deviations than vertical displacement in cynomolgus monkeys. Acquisition of high-density radial scans allowed for the mathematical reconstruction and modelling of the nerve fiber layer and extrapolation of its thickness. Accurate and strictly repeatable circle scan placement is critical to obtain reproducible values, which is essential for longitudinal studies.
format Online
Article
Text
id pubmed-7446827
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-74468272020-08-26 A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis) Niklaus, Stephanie Hasler, Pascal W. Bryant, Timothy Desgent, Sébastien Vezina, Mark Schnitzer, Tobias K. Maloca, Peter M. Denk, Nora PLoS One Research Article The main objective of the study was to analyze deviations in retinal nerve fiber layer (RNFL) thickness measurements caused by the displacement of circular optic disc optical coherence tomography scans. High-density radial scans of the optic nerve heads of cynomolgus monkeys were acquired. The retinal nerve fiber layer was manually segmented, and a surface plot of the discrete coordinates was generated. From this plot, the RNFL thicknesses were calculated and compared between accurately centered and intentionally displaced circle scans. Circle scan displacement caused circumpapillary retinal nerve fiber layer thickness deviations of increasing magnitude with increasing center offset. As opposed to the human eye, horizontal displacement resulted in larger RNFL thickness deviations than vertical displacement in cynomolgus monkeys. Acquisition of high-density radial scans allowed for the mathematical reconstruction and modelling of the nerve fiber layer and extrapolation of its thickness. Accurate and strictly repeatable circle scan placement is critical to obtain reproducible values, which is essential for longitudinal studies. Public Library of Science 2020-08-21 /pmc/articles/PMC7446827/ /pubmed/32822382 http://dx.doi.org/10.1371/journal.pone.0237858 Text en © 2020 Niklaus et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Niklaus, Stephanie
Hasler, Pascal W.
Bryant, Timothy
Desgent, Sébastien
Vezina, Mark
Schnitzer, Tobias K.
Maloca, Peter M.
Denk, Nora
A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title_full A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title_fullStr A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title_full_unstemmed A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title_short A 3D model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (Macaca fascicularis)
title_sort 3d model to evaluate retinal nerve fiber layer thickness deviations caused by the displacement of optical coherence tomography circular scans in cynomolgus monkeys (macaca fascicularis)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446827/
https://www.ncbi.nlm.nih.gov/pubmed/32822382
http://dx.doi.org/10.1371/journal.pone.0237858
work_keys_str_mv AT niklausstephanie a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT haslerpascalw a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT bryanttimothy a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT desgentsebastien a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT vezinamark a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT schnitzertobiask a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT malocapeterm a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT denknora a3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT niklausstephanie 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT haslerpascalw 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT bryanttimothy 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT desgentsebastien 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT vezinamark 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT schnitzertobiask 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT malocapeterm 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis
AT denknora 3dmodeltoevaluateretinalnervefiberlayerthicknessdeviationscausedbythedisplacementofopticalcoherencetomographycircularscansincynomolgusmonkeysmacacafascicularis