Cargando…
Predictive analysis methods for human microbiome data with application to Parkinson’s disease
Microbiome data consists of operational taxonomic unit (OTU) counts characterized by zero-inflation, over-dispersion, and grouping structure among samples. Currently, statistical testing methods are commonly performed to identify OTUs that are associated with a phenotype. The limitations of statisti...
Autores principales: | Dong, Mei, Li, Longhai, Chen, Man, Kusalik, Anthony, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446854/ https://www.ncbi.nlm.nih.gov/pubmed/32834004 http://dx.doi.org/10.1371/journal.pone.0237779 |
Ejemplares similares
-
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
por: Bai, Wei, et al.
Publicado: (2021) -
Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data
por: MacKay, Kimberly, et al.
Publicado: (2020) -
Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites
por: Trost, Brett, et al.
Publicado: (2016) -
Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection
por: Shi, Jinhong, et al.
Publicado: (2019) -
Nutritional Intake and Gut Microbiome Composition Predict Parkinson’s Disease
por: Lubomski, Michal, et al.
Publicado: (2022)