Cargando…
On estimation procedures of stress-strength reliability for Weibull distribution with application
For the first time, ten frequentist estimation methods are considered on stress-strength reliability R = P(Y < X) when X and Y are two independent Weibull distributions with the same shape parameter. The start point to estimate the parameter R is the maximum likelihood method. Other than the maxi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446905/ https://www.ncbi.nlm.nih.gov/pubmed/32836226 http://dx.doi.org/10.1371/journal.pone.0237997 |
_version_ | 1783574213236359168 |
---|---|
author | Almarashi, Abdullah M. Algarni, Ali Nassar, Mazen |
author_facet | Almarashi, Abdullah M. Algarni, Ali Nassar, Mazen |
author_sort | Almarashi, Abdullah M. |
collection | PubMed |
description | For the first time, ten frequentist estimation methods are considered on stress-strength reliability R = P(Y < X) when X and Y are two independent Weibull distributions with the same shape parameter. The start point to estimate the parameter R is the maximum likelihood method. Other than the maximum likelihood method, a nine frequentist estimation methods are used to estimate R, namely: least square, weighted least square, percentile, maximum product of spacing, minimum spacing absolute distance, minimum spacing absolute-log distance, method of Cramér-von Mises, Anderson-Darling and Right-tail Anderson-Darling. We also consider two parametric bootstrap confidence intervals of R. We compare the efficiency of the different proposed estimators by conducting an extensive Mont Carlo simulation study. The performance and the finite sample properties of the different estimators are compared in terms of relative biases and relative mean squared errors. The Mont Carlo simulation study revels that the percentile and maximum product of spacing methods are highly competitive with the other methods for small and large sample sizes. To show the applicability and the importance of the proposed estimators, we analyze one real data set. |
format | Online Article Text |
id | pubmed-7446905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74469052020-08-26 On estimation procedures of stress-strength reliability for Weibull distribution with application Almarashi, Abdullah M. Algarni, Ali Nassar, Mazen PLoS One Research Article For the first time, ten frequentist estimation methods are considered on stress-strength reliability R = P(Y < X) when X and Y are two independent Weibull distributions with the same shape parameter. The start point to estimate the parameter R is the maximum likelihood method. Other than the maximum likelihood method, a nine frequentist estimation methods are used to estimate R, namely: least square, weighted least square, percentile, maximum product of spacing, minimum spacing absolute distance, minimum spacing absolute-log distance, method of Cramér-von Mises, Anderson-Darling and Right-tail Anderson-Darling. We also consider two parametric bootstrap confidence intervals of R. We compare the efficiency of the different proposed estimators by conducting an extensive Mont Carlo simulation study. The performance and the finite sample properties of the different estimators are compared in terms of relative biases and relative mean squared errors. The Mont Carlo simulation study revels that the percentile and maximum product of spacing methods are highly competitive with the other methods for small and large sample sizes. To show the applicability and the importance of the proposed estimators, we analyze one real data set. Public Library of Science 2020-08-24 /pmc/articles/PMC7446905/ /pubmed/32836226 http://dx.doi.org/10.1371/journal.pone.0237997 Text en © 2020 Almarashi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Almarashi, Abdullah M. Algarni, Ali Nassar, Mazen On estimation procedures of stress-strength reliability for Weibull distribution with application |
title | On estimation procedures of stress-strength reliability for Weibull distribution with application |
title_full | On estimation procedures of stress-strength reliability for Weibull distribution with application |
title_fullStr | On estimation procedures of stress-strength reliability for Weibull distribution with application |
title_full_unstemmed | On estimation procedures of stress-strength reliability for Weibull distribution with application |
title_short | On estimation procedures of stress-strength reliability for Weibull distribution with application |
title_sort | on estimation procedures of stress-strength reliability for weibull distribution with application |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446905/ https://www.ncbi.nlm.nih.gov/pubmed/32836226 http://dx.doi.org/10.1371/journal.pone.0237997 |
work_keys_str_mv | AT almarashiabdullahm onestimationproceduresofstressstrengthreliabilityforweibulldistributionwithapplication AT algarniali onestimationproceduresofstressstrengthreliabilityforweibulldistributionwithapplication AT nassarmazen onestimationproceduresofstressstrengthreliabilityforweibulldistributionwithapplication |