Cargando…

Impact of hyperglycemia and treatment with metformin on ligature-induced bone loss, bone repair and expression of bone metabolism transcription factors

This study evaluated the influence of type 2 diabetes mellitus on bone loss, bone repair and cytokine production in hyperglycemic rats, treated or not with metformin. The animals were distributed as follow: Non-Hyperglycemic (NH), Non Hyperglycemic with Ligature (NH-L), Treated Non Hyperglycemic (TN...

Descripción completa

Detalles Bibliográficos
Autores principales: Malta, Fernando Souza, Garcia, Roberto Puertas, Azarias, Josuel Siqueira, Ribeiro, Geysica Kauane Dos Reis, Miranda, Tamires Szemereske, Shibli, Jamil Awad, Bastos, Marta Ferreira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447028/
https://www.ncbi.nlm.nih.gov/pubmed/32841254
http://dx.doi.org/10.1371/journal.pone.0237660
Descripción
Sumario:This study evaluated the influence of type 2 diabetes mellitus on bone loss, bone repair and cytokine production in hyperglycemic rats, treated or not with metformin. The animals were distributed as follow: Non-Hyperglycemic (NH), Non Hyperglycemic with Ligature (NH-L), Treated Non Hyperglycemic (TNH), Treated Non Hyperglycemic with Ligature Treated (TNH-L), Hyperglycemic (H), Treated Hyperglycemic (TH), Hyperglycemic with Ligature (H-L), Treated Hyperglycemic with Ligature (TH-L). At 40(th) day after induction of hyperglycemia, the groups NH-L, TNH-L, H-L, TH-L received a ligature to induce periodontitis. On the 69(th), the TNH, TNH-L, TH, TH-L groups received metformin until the end of the study. Bone repair was evaluated at histometric and the expression levels of Sox9, RunX2 and Osterix. Analysis of the ex-vivo expression of TNF-α, IFN-γ, IL-12, IL-4, TGF-β, IL-10, IL-6 and IL-17 were also evaluated. Metformin partially reverse induced bone loss in NH and H animals. Lower OPG/RANKL, increased OCN and TRAP expression were observed in hyperglycemic animals, and treatment with metformin partially reversed hyperglycemia on the OPG/RANKL, OPN and TRAP expression in the periodontitis. The expression of SOX9 and RunX2 were also decreased by hyperglycemia and metformin treatment. Increased ex vivo levels of TNF-α, IL-6, IL-4, IL-10 and IL-17 was observed. Hyperglycemia promoted increased IL-10 levels compared to non-hyperglycemic ones. Treatment of NH with metformin was able to mediate increased levels of TNF-α, IL-10 and IL-17, whereas for H an increase of TNF-α and IL-17 was detected in the 24- or 48-hour after stimulation with LPS. Ligature was able to induce increased levels of TNF-α and IL-17 in both NH and H. This study revealed the negative impact of hyperglycemia and/or treatment with metformin in the bone repair via inhibition of transcription factors associated with osteoblastic differentiation.