Cargando…
Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau
Long-term chemical fertilizer input causes soil organic matter losses, structural compaction, and changes in soil water and nutrient availability, which have been subdued in the most of dry farmland in China. The concept of “more efficiency with less fertilizer input” has been proposed and is urgent...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447034/ https://www.ncbi.nlm.nih.gov/pubmed/32841280 http://dx.doi.org/10.1371/journal.pone.0238042 |
_version_ | 1783574231415521280 |
---|---|
author | Wang, Xiaolin Yan, Jiakun Zhang, Xiong Zhang, Suiqi Chen, Yinglong |
author_facet | Wang, Xiaolin Yan, Jiakun Zhang, Xiong Zhang, Suiqi Chen, Yinglong |
author_sort | Wang, Xiaolin |
collection | PubMed |
description | Long-term chemical fertilizer input causes soil organic matter losses, structural compaction, and changes in soil water and nutrient availability, which have been subdued in the most of dry farmland in China. The concept of “more efficiency with less fertilizer input” has been proposed and is urgently needed in current agriculture. Application of chemical fertilizer combined with organic manure (OM) could be a solution for soil protection and sustainable production of dry-land maize (Zea mays. L). Field research over three consecutive years on the Loess Plateau of China was conducted to evaluate the integrated effects of chemical fertilizer strategies and additional OM input on soil nutrients availability and water use in maize. The results showed that, after harvest, soil bulk density decreased significantly with OM application, concomitant with 11.9, 18.7 and 97.8% increases in topsoil total nitrogen, organic matter, and available phosphorus contents, respectively, compared with those under equal chemical NPK input. Water use in the 1.0–1.5 m soil profile was improved, therefore, the soil conditions were better for maize root growth, leaf area and shoot biomass of individual maize plants increased significantly with OM application. Optimized NPK strategies increased grain yield and water use efficiency by 18.5 and 20.6%, respectively, compared to only chemical NP input. Furthermore, additional OM input promoted yield and water use efficiency by 8.9 and 5.8%, respectively. Addition of OM promotes sustainable soil and maize grain productivity as well as friendly soil environmental management of dry land farming. |
format | Online Article Text |
id | pubmed-7447034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74470342020-08-31 Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau Wang, Xiaolin Yan, Jiakun Zhang, Xiong Zhang, Suiqi Chen, Yinglong PLoS One Research Article Long-term chemical fertilizer input causes soil organic matter losses, structural compaction, and changes in soil water and nutrient availability, which have been subdued in the most of dry farmland in China. The concept of “more efficiency with less fertilizer input” has been proposed and is urgently needed in current agriculture. Application of chemical fertilizer combined with organic manure (OM) could be a solution for soil protection and sustainable production of dry-land maize (Zea mays. L). Field research over three consecutive years on the Loess Plateau of China was conducted to evaluate the integrated effects of chemical fertilizer strategies and additional OM input on soil nutrients availability and water use in maize. The results showed that, after harvest, soil bulk density decreased significantly with OM application, concomitant with 11.9, 18.7 and 97.8% increases in topsoil total nitrogen, organic matter, and available phosphorus contents, respectively, compared with those under equal chemical NPK input. Water use in the 1.0–1.5 m soil profile was improved, therefore, the soil conditions were better for maize root growth, leaf area and shoot biomass of individual maize plants increased significantly with OM application. Optimized NPK strategies increased grain yield and water use efficiency by 18.5 and 20.6%, respectively, compared to only chemical NP input. Furthermore, additional OM input promoted yield and water use efficiency by 8.9 and 5.8%, respectively. Addition of OM promotes sustainable soil and maize grain productivity as well as friendly soil environmental management of dry land farming. Public Library of Science 2020-08-25 /pmc/articles/PMC7447034/ /pubmed/32841280 http://dx.doi.org/10.1371/journal.pone.0238042 Text en © 2020 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Xiaolin Yan, Jiakun Zhang, Xiong Zhang, Suiqi Chen, Yinglong Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title | Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title_full | Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title_fullStr | Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title_full_unstemmed | Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title_short | Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau |
title_sort | organic manure input improves soil water and nutrients use for sustainable maize (zea mays. l) productivity on the loess plateau |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447034/ https://www.ncbi.nlm.nih.gov/pubmed/32841280 http://dx.doi.org/10.1371/journal.pone.0238042 |
work_keys_str_mv | AT wangxiaolin organicmanureinputimprovessoilwaterandnutrientsuseforsustainablemaizezeamayslproductivityontheloessplateau AT yanjiakun organicmanureinputimprovessoilwaterandnutrientsuseforsustainablemaizezeamayslproductivityontheloessplateau AT zhangxiong organicmanureinputimprovessoilwaterandnutrientsuseforsustainablemaizezeamayslproductivityontheloessplateau AT zhangsuiqi organicmanureinputimprovessoilwaterandnutrientsuseforsustainablemaizezeamayslproductivityontheloessplateau AT chenyinglong organicmanureinputimprovessoilwaterandnutrientsuseforsustainablemaizezeamayslproductivityontheloessplateau |