Cargando…
Comparison between atlas and convolutional neural network based automatic segmentation of multiple organs at risk in non-small cell lung cancer
Delineation of organs at risk (OARs) is important but time consuming for radiotherapy planning. Automatic segmentation of OARs based on convolutional neural network (CNN) has been established for lung cancer patients at our institution. The aim of this study is to compare automatic segmentation base...
Autores principales: | Zhang, Tao, Yang, Yin, Wang, Jingbo, Men, Kuo, Wang, Xin, Deng, Lei, Bi, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447392/ https://www.ncbi.nlm.nih.gov/pubmed/32846816 http://dx.doi.org/10.1097/MD.0000000000021800 |
Ejemplares similares
-
Tracheoesophageal fistula associated with bevacizumab after thoracic radiotherapy in non-small cell lung cancer: A case report
por: Zhang, Tao, et al.
Publicado: (2020) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Definitive local therapy for extracranial single-organ oligorecurrent non-small-cell lung cancer: A single institutional retrospective study
por: Jin, Jia-Nan, et al.
Publicado: (2022) -
Intensity modulated radiotherapy might be effective for locally advanced esophageal carcinosarcoma: A single center’s experience and review of literature
por: Yang, Siran, et al.
Publicado: (2022) -
Pulmonary function protection by single-port thoracoscopic segmental lung resection in elderly patients with IA non-small cell lung cancer: A differential matched analysis
por: Wang, Silin, et al.
Publicado: (2023)