Cargando…
Deep learning-based ovarian cancer subtypes identification using multi-omics data
BACKGROUND: Identifying molecular subtypes of ovarian cancer is important. Compared to identify subtypes using single omics data, the multi-omics data analysis can utilize more information. Autoencoder has been widely used to construct lower dimensional representation for multi-omics feature integra...
Autores principales: | Guo, Long-Yi, Wu, Ai-Hua, Wang, Yong-xia, Zhang, Li-ping, Chai, Hua, Liang, Xue-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447574/ https://www.ncbi.nlm.nih.gov/pubmed/32863885 http://dx.doi.org/10.1186/s13040-020-00222-x |
Ejemplares similares
-
Molecular Subtyping of Serous Ovarian Cancer Based on Multi-omics Data
por: Zhang, Zhe, et al.
Publicado: (2016) -
Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data
por: Franco, Edian F., et al.
Publicado: (2021) -
SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition
por: Sun, Qiuwen, et al.
Publicado: (2023) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping
por: Munquad, Sana, et al.
Publicado: (2023)