Cargando…
Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice
OBJECTIVE: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). METHODS: hCN1 transgenic (TG) mice were generated in a BTBR(Ob/Ob) genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447680/ https://www.ncbi.nlm.nih.gov/pubmed/32803273 http://dx.doi.org/10.1007/s00109-020-01957-0 |
_version_ | 1783574352926605312 |
---|---|
author | Qiu, Jiedong Albrecht, Thomas Zhang, Shiqi Hauske, Sibylle J. Rodriguez-Niño, Angelica Zhang, Xinmiao Nosan, Darya Pastene, Diego O. Sticht, Carsten Delatorre, Carolina van Goor, Harry Porubsky, Stefan Krämer, Bernhard K. Yard, Benito A. |
author_facet | Qiu, Jiedong Albrecht, Thomas Zhang, Shiqi Hauske, Sibylle J. Rodriguez-Niño, Angelica Zhang, Xinmiao Nosan, Darya Pastene, Diego O. Sticht, Carsten Delatorre, Carolina van Goor, Harry Porubsky, Stefan Krämer, Bernhard K. Yard, Benito A. |
author_sort | Qiu, Jiedong |
collection | PubMed |
description | OBJECTIVE: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). METHODS: hCN1 transgenic (TG) mice were generated in a BTBR(Ob/Ob) genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBR(Ob/Ob) mice leads to changes in the renal transcriptome as compared with wild-type BTBR(Ob/Ob) mice. RESULTS: hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBR(Ob/Ob) mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 μg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBR(Ob/Wt), BTBR(Ob/Ob,) and hCN1 BTBR(Ob/Ob) mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator–activated receptor-alpha have been reported to play essential roles in DKD. CONCLUSIONS: Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. KEY MESSAGES: Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD). BTBR(Ob/Ob) mice with human CN1 develop a more aggravated DKD phenotype. Microarray revealed alterations by CN1 which are not altered by hyperglycemia. These genes have been described to play essential roles in DKD. Inhibiting CN1 could be beneficial in DKD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00109-020-01957-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7447680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-74476802020-09-02 Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice Qiu, Jiedong Albrecht, Thomas Zhang, Shiqi Hauske, Sibylle J. Rodriguez-Niño, Angelica Zhang, Xinmiao Nosan, Darya Pastene, Diego O. Sticht, Carsten Delatorre, Carolina van Goor, Harry Porubsky, Stefan Krämer, Bernhard K. Yard, Benito A. J Mol Med (Berl) Original Article OBJECTIVE: To assess the influence of serum carnosinase (CN1) on the course of diabetic kidney disease (DKD). METHODS: hCN1 transgenic (TG) mice were generated in a BTBR(Ob/Ob) genetic background to allow the spontaneous development of DKD in the presence of serum carnosinase. The influence of serum CN1 expression on obesity, hyperglycemia, and renal impairment was assessed. We also studied if aggravation of renal impairment in hCN1 TG BTBR(Ob/Ob) mice leads to changes in the renal transcriptome as compared with wild-type BTBR(Ob/Ob) mice. RESULTS: hCN1 was detected in the serum and urine of mice from two different hCN1 TG lines. The transgene was expressed in the liver but not in the kidney. High CN1 expression was associated with low plasma and renal carnosine concentrations, even after oral carnosine supplementation. Obese hCN1 transgenic BTBR(Ob/Ob) mice displayed significantly higher levels of glycated hemoglobin, glycosuria, proteinuria, and increased albumin-creatinine ratios (1104 ± 696 vs 492.1 ± 282.2 μg/mg) accompanied by an increased glomerular tuft area and renal corpuscle size. Gene-expression profiling of renal tissue disclosed hierarchical clustering between BTBR(Ob/Wt), BTBR(Ob/Ob,) and hCN1 BTBR(Ob/Ob) mice. Along with aggravation of the DKD phenotype, 26 altered genes have been found in obese hCN1 transgenic mice; among them claudin-1, thrombospondin-1, nephronectin, and peroxisome proliferator–activated receptor-alpha have been reported to play essential roles in DKD. CONCLUSIONS: Our data support a role for serum carnosinase 1 in the progression of DKD. Whether this is mainly attributed to the changes in renal carnosine concentrations warrants further studies. KEY MESSAGES: Increased carnosinase 1 (CN1) is associated with diabetic kidney disease (DKD). BTBR(Ob/Ob) mice with human CN1 develop a more aggravated DKD phenotype. Microarray revealed alterations by CN1 which are not altered by hyperglycemia. These genes have been described to play essential roles in DKD. Inhibiting CN1 could be beneficial in DKD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00109-020-01957-0) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2020-08-15 2020 /pmc/articles/PMC7447680/ /pubmed/32803273 http://dx.doi.org/10.1007/s00109-020-01957-0 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Qiu, Jiedong Albrecht, Thomas Zhang, Shiqi Hauske, Sibylle J. Rodriguez-Niño, Angelica Zhang, Xinmiao Nosan, Darya Pastene, Diego O. Sticht, Carsten Delatorre, Carolina van Goor, Harry Porubsky, Stefan Krämer, Bernhard K. Yard, Benito A. Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title | Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title_full | Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title_fullStr | Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title_full_unstemmed | Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title_short | Human carnosinase 1 overexpression aggravates diabetes and renal impairment in BTBR(Ob/Ob) mice |
title_sort | human carnosinase 1 overexpression aggravates diabetes and renal impairment in btbr(ob/ob) mice |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447680/ https://www.ncbi.nlm.nih.gov/pubmed/32803273 http://dx.doi.org/10.1007/s00109-020-01957-0 |
work_keys_str_mv | AT qiujiedong humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT albrechtthomas humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT zhangshiqi humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT hauskesibyllej humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT rodriguezninoangelica humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT zhangxinmiao humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT nosandarya humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT pastenediegoo humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT stichtcarsten humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT delatorrecarolina humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT vangoorharry humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT porubskystefan humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT kramerbernhardk humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice AT yardbenitoa humancarnosinase1overexpressionaggravatesdiabetesandrenalimpairmentinbtbrobobmice |