Cargando…
Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
Brain-machine interfaces are promising tools to restore lost motor functions and probe brain functional mechanisms. As the number of recording electrodes has been exponentially rising, the signal processing capability of brain–machine interfaces is falling behind. One of the key bottlenecks is that...
Autores principales: | Liu, Zhengwu, Tang, Jianshi, Gao, Bin, Yao, Peng, Li, Xinyi, Liu, Dingkun, Zhou, Ying, Qian, He, Hong, Bo, Wu, Huaqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447752/ https://www.ncbi.nlm.nih.gov/pubmed/32843643 http://dx.doi.org/10.1038/s41467-020-18105-4 |
Ejemplares similares
-
Multichannel parallel processing of neural signals in memristor arrays
por: Liu, Zhengwu, et al.
Publicado: (2020) -
Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis
por: Zhao, Han, et al.
Publicado: (2023) -
Concealable physically unclonable function chip with a memristor array
por: Gao, Bin, et al.
Publicado: (2022) -
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
por: Zhong, Yanan, et al.
Publicado: (2021) -
Memristor-based analogue computing for brain-inspired sound localization with in situ training
por: Gao, Bin, et al.
Publicado: (2022)