Cargando…
Reduced serial dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and schizophrenia
A mechanistic understanding of core cognitive processes, such as working memory, is crucial to addressing psychiatric symptoms in brain disorders. We propose a combined psychophysical and biophysical account of two symptomatologically related diseases, both linked to hypofunctional NMDARs: schizophr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447775/ https://www.ncbi.nlm.nih.gov/pubmed/32843635 http://dx.doi.org/10.1038/s41467-020-18033-3 |
Sumario: | A mechanistic understanding of core cognitive processes, such as working memory, is crucial to addressing psychiatric symptoms in brain disorders. We propose a combined psychophysical and biophysical account of two symptomatologically related diseases, both linked to hypofunctional NMDARs: schizophrenia and autoimmune anti-NMDAR encephalitis. We first quantified shared working memory alterations in a delayed-response task. In both patient groups, we report a markedly reduced influence of previous stimuli on working memory contents, despite preserved memory precision. We then simulated this finding with NMDAR-dependent synaptic alterations in a microcircuit model of prefrontal cortex. Changes in cortical excitation destabilized within-trial memory maintenance and could not account for disrupted serial dependence in working memory. Rather, a quantitative fit between data and simulations supports alterations of an NMDAR-dependent memory mechanism operating on longer timescales, such as short-term potentiation. |
---|