Cargando…

Imaging topology of Hofstadter ribbons

Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494–7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183–204; Kitaev 2003 Ann. Phys. 303 2–30). The quantum Hall effect deri...

Descripción completa

Detalles Bibliográficos
Autores principales: Genkina, Dina, Aycock, Lauren M, Lu, Hsin-I, Lu, Mingwu, Pineiro, Alina M, Spielman, I B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448228/
https://www.ncbi.nlm.nih.gov/pubmed/32855619
_version_ 1783574459794325504
author Genkina, Dina
Aycock, Lauren M
Lu, Hsin-I
Lu, Mingwu
Pineiro, Alina M
Spielman, I B
author_facet Genkina, Dina
Aycock, Lauren M
Lu, Hsin-I
Lu, Mingwu
Pineiro, Alina M
Spielman, I B
author_sort Genkina, Dina
collection PubMed
description Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494–7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183–204; Kitaev 2003 Ann. Phys. 303 2–30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system’s topology (Laughlin 1981 Phys. Rev. B 23 5632–33). At magnetic fields beyond the reach of current condensed matter experiment, around 10(4) T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405–8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl etal 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems.
format Online
Article
Text
id pubmed-7448228
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-74482282020-08-26 Imaging topology of Hofstadter ribbons Genkina, Dina Aycock, Lauren M Lu, Hsin-I Lu, Mingwu Pineiro, Alina M Spielman, I B New J Phys Article Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al 1980 Phys. Rev. Lett. 45 494–7) and promise future applications in quantum computing (Freedman 2001 Found. Comput. Math. 1 183–204; Kitaev 2003 Ann. Phys. 303 2–30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system’s topology (Laughlin 1981 Phys. Rev. B 23 5632–33). At magnetic fields beyond the reach of current condensed matter experiment, around 10(4) T, this conductance remains precisely quantized with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405–8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al 2014 Phys. Rev. Lett. 112 043001; Stuhl etal 2015 Science 349 1514; Mancini et al 2015 Science 349 1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of 5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems. 2019 /pmc/articles/PMC7448228/ /pubmed/32855619 Text en https://creativecommons.org/licenses/by/3.0/ Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/) . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
spellingShingle Article
Genkina, Dina
Aycock, Lauren M
Lu, Hsin-I
Lu, Mingwu
Pineiro, Alina M
Spielman, I B
Imaging topology of Hofstadter ribbons
title Imaging topology of Hofstadter ribbons
title_full Imaging topology of Hofstadter ribbons
title_fullStr Imaging topology of Hofstadter ribbons
title_full_unstemmed Imaging topology of Hofstadter ribbons
title_short Imaging topology of Hofstadter ribbons
title_sort imaging topology of hofstadter ribbons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448228/
https://www.ncbi.nlm.nih.gov/pubmed/32855619
work_keys_str_mv AT genkinadina imagingtopologyofhofstadterribbons
AT aycocklaurenm imagingtopologyofhofstadterribbons
AT luhsini imagingtopologyofhofstadterribbons
AT lumingwu imagingtopologyofhofstadterribbons
AT pineiroalinam imagingtopologyofhofstadterribbons
AT spielmanib imagingtopologyofhofstadterribbons