Cargando…

Dihydroartemisinin Modulates Apoptosis and Autophagy in Multiple Myeloma through the P38/MAPK and Wnt/β-Catenin Signaling Pathways

Dihydroartemisinin (DHA), an active metabolite and derivative of artemisinin, is the most effective antimalarial drug and has strong antitumor activity in various tumor types. It has recently been reported that DHA can induce autophagy and has significant effects on multiple myeloma (MM), but the me...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xiuhua, Liu, Yang, Zhang, Enfan, Chen, Jing, Huang, Xi, Yan, Haimeng, Cao, Wen, Qu, Jianwei, Gu, Huiyao, Xu, Ruyi, He, Jingsong, Cai, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448255/
https://www.ncbi.nlm.nih.gov/pubmed/32879652
http://dx.doi.org/10.1155/2020/6096391
Descripción
Sumario:Dihydroartemisinin (DHA), an active metabolite and derivative of artemisinin, is the most effective antimalarial drug and has strong antitumor activity in various tumor types. It has recently been reported that DHA can induce autophagy and has significant effects on multiple myeloma (MM), but the mechanisms and the relationship between the autophagy and apoptosis induced by DHA remain to be elucidated. Herein, we demonstrated that DHA significantly induces cell death in a dose- and time-dependent manner via the extrinsic and intrinsic apoptosis pathways. Moreover, DHA-induced autophagy, which plays a prodeath role in MM, can regulate canonical apoptosis and vice versa. Furthermore, the P38/MAPK signaling pathway is responsible for decreased autophagy and increased apoptosis. DHA induces autophagy and apoptosis also through the inhibition of the Wnt/β-catenin signaling pathway. In addition, DHA shows a strong effect in a xenograft mouse model. Collectively, these findings reveal that DHA, as an artemisinin-based drug, could be an effective and safe therapeutic agent for MM.