Cargando…

miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)

MicroRNAs (miRNAs) are reported to be involved in renal hypoxia/reoxygenation (H/R) damage. To investigate this further, human kidney (HK-2) cells were cultured, subjected to H/R and the function of miR-30a-5p and glutamate dehydrogenase 1 (GLUD1) was evaluated. The results showed that, miR-30-5p wa...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yangbiao, Lang, Xujun, Cheng, Dong, Zhang, Ting, Yang, Zhihao, Xiong, Rongbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448462/
https://www.ncbi.nlm.nih.gov/pubmed/32945480
http://dx.doi.org/10.3892/or.2020.7718
_version_ 1783574503206420480
author He, Yangbiao
Lang, Xujun
Cheng, Dong
Zhang, Ting
Yang, Zhihao
Xiong, Rongbing
author_facet He, Yangbiao
Lang, Xujun
Cheng, Dong
Zhang, Ting
Yang, Zhihao
Xiong, Rongbing
author_sort He, Yangbiao
collection PubMed
description MicroRNAs (miRNAs) are reported to be involved in renal hypoxia/reoxygenation (H/R) damage. To investigate this further, human kidney (HK-2) cells were cultured, subjected to H/R and the function of miR-30a-5p and glutamate dehydrogenase 1 (GLUD1) was evaluated. The results showed that, miR-30-5p was downregulated and GLUD1 was upregulated in HK-2 cells exposed to H/R. The relationship between miR-30a-5p and GLUD1 was determined using dual luciferase assays. Primary HK-2 cells were cultured in H/R and transfected with negative control 1 (NC1), negative control 2 (NC2), mimic, inhibitor or GLUD1 siRNA plasmids. Reactive oxygen species (ROS) generation, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and the rate of apoptosis in HK-2 cells were assessed. The results showed that, miR-30a-5p mimic reduced the production of ROS in HK-2 cells treated with H/R, but increased the activity of SOD, CAT and GPx. In addition, miR-30a-5p mimic significantly decreased H/R-mediated apoptosis, decreased the expression of bax and activity of caspase-3 and enhanced the expression of bcl-2. However, miR-30a-5p inhibitor showed the opposite effect with regard to the degree of oxidative damage and apoptosis in H/R-induced HK-2 cells. Silencing GLUD1 rescued the influence of miR-30a-5p inhibitor on oxidative injury and apoptosis in HK-2 cells stimulated with H/R. These results demonstrated that under H/R conditions, miR-30a-5p can reduce oxidative stress in vitro by targeting GLUD1, which may be a novel therapeutic target for liver failure and worth further study.
format Online
Article
Text
id pubmed-7448462
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-74484622020-08-28 miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1) He, Yangbiao Lang, Xujun Cheng, Dong Zhang, Ting Yang, Zhihao Xiong, Rongbing Oncol Rep Articles MicroRNAs (miRNAs) are reported to be involved in renal hypoxia/reoxygenation (H/R) damage. To investigate this further, human kidney (HK-2) cells were cultured, subjected to H/R and the function of miR-30a-5p and glutamate dehydrogenase 1 (GLUD1) was evaluated. The results showed that, miR-30-5p was downregulated and GLUD1 was upregulated in HK-2 cells exposed to H/R. The relationship between miR-30a-5p and GLUD1 was determined using dual luciferase assays. Primary HK-2 cells were cultured in H/R and transfected with negative control 1 (NC1), negative control 2 (NC2), mimic, inhibitor or GLUD1 siRNA plasmids. Reactive oxygen species (ROS) generation, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and the rate of apoptosis in HK-2 cells were assessed. The results showed that, miR-30a-5p mimic reduced the production of ROS in HK-2 cells treated with H/R, but increased the activity of SOD, CAT and GPx. In addition, miR-30a-5p mimic significantly decreased H/R-mediated apoptosis, decreased the expression of bax and activity of caspase-3 and enhanced the expression of bcl-2. However, miR-30a-5p inhibitor showed the opposite effect with regard to the degree of oxidative damage and apoptosis in H/R-induced HK-2 cells. Silencing GLUD1 rescued the influence of miR-30a-5p inhibitor on oxidative injury and apoptosis in HK-2 cells stimulated with H/R. These results demonstrated that under H/R conditions, miR-30a-5p can reduce oxidative stress in vitro by targeting GLUD1, which may be a novel therapeutic target for liver failure and worth further study. D.A. Spandidos 2020-10 2020-08-07 /pmc/articles/PMC7448462/ /pubmed/32945480 http://dx.doi.org/10.3892/or.2020.7718 Text en Copyright: © He et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
He, Yangbiao
Lang, Xujun
Cheng, Dong
Zhang, Ting
Yang, Zhihao
Xiong, Rongbing
miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title_full miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title_fullStr miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title_full_unstemmed miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title_short miR-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in HK-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1)
title_sort mir-30a-5p inhibits hypoxia/reoxygenation-induced oxidative stress and apoptosis in hk-2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (glud1)
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448462/
https://www.ncbi.nlm.nih.gov/pubmed/32945480
http://dx.doi.org/10.3892/or.2020.7718
work_keys_str_mv AT heyangbiao mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1
AT langxujun mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1
AT chengdong mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1
AT zhangting mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1
AT yangzhihao mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1
AT xiongrongbing mir30a5pinhibitshypoxiareoxygenationinducedoxidativestressandapoptosisinhk2renaltubularepithelialcellsbytargetingglutamatedehydrogenase1glud1