Cargando…
Predicting viral exposure response from modeling the changes of co-expression networks using time series gene expression data
BACKGROUND: Deciphering the relationship between clinical responses and gene expression profiles may shed light on the mechanisms underlying diseases. Most existing literature has focused on exploring such relationship from cross-sectional gene expression data. It is likely that the dynamic nature o...
Autores principales: | Dong, Fangli, He, Yong, Wang, Tao, Han, Dong, Lu, Hui, Zhao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449007/ https://www.ncbi.nlm.nih.gov/pubmed/32842958 http://dx.doi.org/10.1186/s12859-020-03705-0 |
Ejemplares similares
-
A dynamic time order network for time-series gene expression data analysis
por: Zhang, Pengyue, et al.
Publicado: (2012) -
Dynamics of Gene Co-expression Networks in Time-Series Data: A Case Study in Drosophila melanogaster Embryogenesis
por: Lau, Li Yieng, et al.
Publicado: (2020) -
Learning the structure of gene regulatory networks from time series gene expression data
por: Li, Haoni, et al.
Publicado: (2011) -
Reconstructing differentiation networks and their regulation from time series single-cell expression data
por: Ding, Jun, et al.
Publicado: (2018) -
In search of functional association from time-series microarray data based on the change trend and level of gene expression
por: He, Feng, et al.
Publicado: (2006)