Cargando…
Determining grasp selection from arm trajectories via deep learning to enable functional hand movement in tetraplegia
BACKGROUND: Cervical spinal cord injury severely affects grasping ability of its survivors. Fortunately, many individuals with tetraplegia retain residual arm movements that allow them to reach for objects. We propose a wearable technology that utilizes arm movement trajectory information and deep l...
Autores principales: | Bhagat, Nikunj, King, Kevin, Ramdeo, Richard, Stein, Adam, Bouton, Chad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449026/ https://www.ncbi.nlm.nih.gov/pubmed/32864392 http://dx.doi.org/10.1186/s42234-020-00053-5 |
Ejemplares similares
-
Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia
por: Ciancibello, John, et al.
Publicado: (2019) -
Case study: persistent recovery of hand movement and tactile sensation in peripheral nerve injury using targeted transcutaneous spinal cord stimulation
por: Chandrasekaran, Santosh, et al.
Publicado: (2023) -
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
por: Hochberg, Leigh R., et al.
Publicado: (2012) -
Case Study: Mapping Evoked Fields in Primary Motor and Sensory Areas via Magnetoencephalography in Tetraplegia
por: Foldes, Stephen T., et al.
Publicado: (2021) -
Decoding Neural Activity in Sulcal and White Matter Areas of the Brain to Accurately Predict Individual Finger Movement and Tactile Stimuli of the Human Hand
por: Bouton, Chad, et al.
Publicado: (2021)