Cargando…

Los aptámeros como novedosa herramienta diagnóstica y terapéutica y su potencial uso en parasitología

Aptamers are single-stranded DNA or RNA sequences that adopt unique three-dimensional structures that allow them to recognize a specific target with high affinity. They can potentially be used for the diagnosis of diseases, as new therapeutic agents, for the detection of food risks, as biosensors, f...

Descripción completa

Detalles Bibliográficos
Autor principal: Ospina, Juan David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Nacional de Salud 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449109/
https://www.ncbi.nlm.nih.gov/pubmed/32463617
http://dx.doi.org/10.7705/biomedica.4765
Descripción
Sumario:Aptamers are single-stranded DNA or RNA sequences that adopt unique three-dimensional structures that allow them to recognize a specific target with high affinity. They can potentially be used for the diagnosis of diseases, as new therapeutic agents, for the detection of food risks, as biosensors, for the detection of toxins, and as drug carriers and nanoparticle markers, among other applications. To date, an aptamer called pegaptanib is the only aptamer approved by the Food and Drug Administration (FDA) for commercial use. Other aptamers are in different clinical stages of development for the treatment of different diseases. In parasitology, investigations carried out with parasites such as Leishmania spp. allowed the acquisition of aptamers that recognize the polyA-binding protein LiPABP and may have potential applications in research and diagnosis and even as therapeutic agents. Regarding malaria, aptamers have been obtained that allow the identification of infected erythrocytes or inhibit the formation of rosettes, along with those that provide promising alternatives for diagnosis by specifically detecting the protein lactate dehydrogenase (PfLDH). In Cryptosporidium parvum allow the detection of oocysts in contaminated food or water. In Entamoeba histolytica, two aptamers called C4 and C5, which inhibit the proliferation of trophozoites in vitro and have potential use as therapeutic agents, have been isolated. Aptamers obtained against Trypanosoma cruzi inhibit the invasion of LLC-MK2 (from monkey kidney) cells by 50-70%, and in T. brucei, aptamers with the potential to transport toxic molecules to the parasitic lysosome were identified as a novel therapeutic strategy. The data collected in this review highlight aptamers as a novel alternative in the research, diagnosis, and treatment of parasites of national interest.