Cargando…
Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449491/ https://www.ncbi.nlm.nih.gov/pubmed/32843336 http://dx.doi.org/10.1136/jitc-2020-001100 |
Sumario: | Pancreatic ductal adenocarcinoma (PDAC) is plagued by a dismal 5-year survival rate, early onset of metastasis and limited efficacy of systemic therapies. This scenario highlights the need to fervently pursue novel therapeutic strategies to treat this disease. Recent research has uncovered complicated dynamics within the tumor microenvironment (TME) of PDAC. An abundant stroma provides a framework for interactions between cancer-associated fibroblasts, suppressive myeloid cells and regulatory lymphocytes, which together create an inhospitable environment for adaptive immune responses. This accounts for the poor infiltration and exhausted phenotypes of effector T cells within pancreatic tumors. Innovative studies in genetically engineered mouse models have established that with appropriate pharmacological modulation of suppressive elements in the TME, T cells can be prompted to regress pancreatic tumors. In light of this knowledge, innovative combinatorial strategies involving immunotherapy and targeted therapies working in concert are rapidly emerging. This review will highlight recent advances in the field related to immune suppression in PDAC, emerging preclinical data and rationale for ongoing immunotherapy clinical trials. In particular, we draw attention to foundational findings involving T-cell activity in PDAC and encourage development of novel therapeutics to improve T-cell responses in this challenging disease. |
---|