Cargando…
Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and exten...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449521/ https://www.ncbi.nlm.nih.gov/pubmed/24097350 http://dx.doi.org/10.1038/nature12663 |
_version_ | 1783574649008816128 |
---|---|
author | Almeida, João Schobesberger, Siegfried Kürten, Andreas Ortega, Ismael K. Kupiainen-Määttä, Oona Praplan, Arnaud P. Adamov, Alexey Amorim, Antonio Bianchi, Federico Breitenlechner, Martin David, André Dommen, Josef Donahue, Neil M. Downard, Andrew Dunne, Eimear Duplissy, Jonathan Ehrhart, Sebastian Flagan, Richard C. Franchin, Alessandro Guida, Roberto Hakala, Jani Hansel, Armin Heinritzi, Martin Henschel, Henning Jokinen, Tuija Junninen, Heikki Kajos, Maija Kangasluoma, Juha Keskinen, Helmi Kupc, Agnieszka Kurtén, Theo Kvashin, Alexander N. Laaksonen, Ari Lehtipalo, Katrianne Leiminger, Markus Leppä, Johannes Loukonen, Ville Makhmutov, Vladimir Mathot, Serge McGrath, Matthew J. Nieminen, Tuomo Olenius, Tinja Onnela, Antti Petäjä, Tuukka Riccobono, Francesco Riipinen, Ilona Rissanen, Matti Rondo, Linda Ruuskanen, Taina Santos, Filipe D. Sarnela, Nina Schallhart, Simon Schnitzhofer, Ralf Seinfeld, John H. Simon, Mario Sipilä, Mikko Stozhkov, Yuri Stratmann, Frank Tomé, Antonio Tröstl, Jasmin Tsagkogeorgas, Georgios Vaattovaara, Petri Viisanen, Yrjo Virtanen, Annele Vrtala, Aron Wagner, Paul E. Weingartner, Ernest Wex, Heike Williamson, Christina Wimmer, Daniela Ye, Penglin Yli-Juuti, Taina Carslaw, Kenneth S. Kulmala, Markku Curtius, Joachim Baltensperger, Urs Worsnop, Douglas R. Vehkamäki, Hanna Kirkby, Jasper |
author_facet | Almeida, João Schobesberger, Siegfried Kürten, Andreas Ortega, Ismael K. Kupiainen-Määttä, Oona Praplan, Arnaud P. Adamov, Alexey Amorim, Antonio Bianchi, Federico Breitenlechner, Martin David, André Dommen, Josef Donahue, Neil M. Downard, Andrew Dunne, Eimear Duplissy, Jonathan Ehrhart, Sebastian Flagan, Richard C. Franchin, Alessandro Guida, Roberto Hakala, Jani Hansel, Armin Heinritzi, Martin Henschel, Henning Jokinen, Tuija Junninen, Heikki Kajos, Maija Kangasluoma, Juha Keskinen, Helmi Kupc, Agnieszka Kurtén, Theo Kvashin, Alexander N. Laaksonen, Ari Lehtipalo, Katrianne Leiminger, Markus Leppä, Johannes Loukonen, Ville Makhmutov, Vladimir Mathot, Serge McGrath, Matthew J. Nieminen, Tuomo Olenius, Tinja Onnela, Antti Petäjä, Tuukka Riccobono, Francesco Riipinen, Ilona Rissanen, Matti Rondo, Linda Ruuskanen, Taina Santos, Filipe D. Sarnela, Nina Schallhart, Simon Schnitzhofer, Ralf Seinfeld, John H. Simon, Mario Sipilä, Mikko Stozhkov, Yuri Stratmann, Frank Tomé, Antonio Tröstl, Jasmin Tsagkogeorgas, Georgios Vaattovaara, Petri Viisanen, Yrjo Virtanen, Annele Vrtala, Aron Wagner, Paul E. Weingartner, Ernest Wex, Heike Williamson, Christina Wimmer, Daniela Ye, Penglin Yli-Juuti, Taina Carslaw, Kenneth S. Kulmala, Markku Curtius, Joachim Baltensperger, Urs Worsnop, Douglas R. Vehkamäki, Hanna Kirkby, Jasper |
author_sort | Almeida, João |
collection | PubMed |
description | Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4,5,6,7,8,9,10,11,12,13,14,15,16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature12663) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7449521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74495212020-09-02 Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere Almeida, João Schobesberger, Siegfried Kürten, Andreas Ortega, Ismael K. Kupiainen-Määttä, Oona Praplan, Arnaud P. Adamov, Alexey Amorim, Antonio Bianchi, Federico Breitenlechner, Martin David, André Dommen, Josef Donahue, Neil M. Downard, Andrew Dunne, Eimear Duplissy, Jonathan Ehrhart, Sebastian Flagan, Richard C. Franchin, Alessandro Guida, Roberto Hakala, Jani Hansel, Armin Heinritzi, Martin Henschel, Henning Jokinen, Tuija Junninen, Heikki Kajos, Maija Kangasluoma, Juha Keskinen, Helmi Kupc, Agnieszka Kurtén, Theo Kvashin, Alexander N. Laaksonen, Ari Lehtipalo, Katrianne Leiminger, Markus Leppä, Johannes Loukonen, Ville Makhmutov, Vladimir Mathot, Serge McGrath, Matthew J. Nieminen, Tuomo Olenius, Tinja Onnela, Antti Petäjä, Tuukka Riccobono, Francesco Riipinen, Ilona Rissanen, Matti Rondo, Linda Ruuskanen, Taina Santos, Filipe D. Sarnela, Nina Schallhart, Simon Schnitzhofer, Ralf Seinfeld, John H. Simon, Mario Sipilä, Mikko Stozhkov, Yuri Stratmann, Frank Tomé, Antonio Tröstl, Jasmin Tsagkogeorgas, Georgios Vaattovaara, Petri Viisanen, Yrjo Virtanen, Annele Vrtala, Aron Wagner, Paul E. Weingartner, Ernest Wex, Heike Williamson, Christina Wimmer, Daniela Ye, Penglin Yli-Juuti, Taina Carslaw, Kenneth S. Kulmala, Markku Curtius, Joachim Baltensperger, Urs Worsnop, Douglas R. Vehkamäki, Hanna Kirkby, Jasper Nature Article Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4,5,6,7,8,9,10,11,12,13,14,15,16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature12663) contains supplementary material, which is available to authorized users. Nature Publishing Group UK 2013-10-06 2013 /pmc/articles/PMC7449521/ /pubmed/24097350 http://dx.doi.org/10.1038/nature12663 Text en © The Author(s) 2013 This work is licensed under a Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 Unported licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/3.0/. |
spellingShingle | Article Almeida, João Schobesberger, Siegfried Kürten, Andreas Ortega, Ismael K. Kupiainen-Määttä, Oona Praplan, Arnaud P. Adamov, Alexey Amorim, Antonio Bianchi, Federico Breitenlechner, Martin David, André Dommen, Josef Donahue, Neil M. Downard, Andrew Dunne, Eimear Duplissy, Jonathan Ehrhart, Sebastian Flagan, Richard C. Franchin, Alessandro Guida, Roberto Hakala, Jani Hansel, Armin Heinritzi, Martin Henschel, Henning Jokinen, Tuija Junninen, Heikki Kajos, Maija Kangasluoma, Juha Keskinen, Helmi Kupc, Agnieszka Kurtén, Theo Kvashin, Alexander N. Laaksonen, Ari Lehtipalo, Katrianne Leiminger, Markus Leppä, Johannes Loukonen, Ville Makhmutov, Vladimir Mathot, Serge McGrath, Matthew J. Nieminen, Tuomo Olenius, Tinja Onnela, Antti Petäjä, Tuukka Riccobono, Francesco Riipinen, Ilona Rissanen, Matti Rondo, Linda Ruuskanen, Taina Santos, Filipe D. Sarnela, Nina Schallhart, Simon Schnitzhofer, Ralf Seinfeld, John H. Simon, Mario Sipilä, Mikko Stozhkov, Yuri Stratmann, Frank Tomé, Antonio Tröstl, Jasmin Tsagkogeorgas, Georgios Vaattovaara, Petri Viisanen, Yrjo Virtanen, Annele Vrtala, Aron Wagner, Paul E. Weingartner, Ernest Wex, Heike Williamson, Christina Wimmer, Daniela Ye, Penglin Yli-Juuti, Taina Carslaw, Kenneth S. Kulmala, Markku Curtius, Joachim Baltensperger, Urs Worsnop, Douglas R. Vehkamäki, Hanna Kirkby, Jasper Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title_full | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title_fullStr | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title_full_unstemmed | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title_short | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
title_sort | molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449521/ https://www.ncbi.nlm.nih.gov/pubmed/24097350 http://dx.doi.org/10.1038/nature12663 |
work_keys_str_mv | AT almeidajoao molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT schobesbergersiegfried molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kurtenandreas molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT ortegaismaelk molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kupiainenmaattaoona molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT praplanarnaudp molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT adamovalexey molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT amorimantonio molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT bianchifederico molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT breitenlechnermartin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT davidandre molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT dommenjosef molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT donahueneilm molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT downardandrew molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT dunneeimear molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT duplissyjonathan molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT ehrhartsebastian molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT flaganrichardc molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT franchinalessandro molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT guidaroberto molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT hakalajani molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT hanselarmin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT heinritzimartin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT henschelhenning molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT jokinentuija molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT junninenheikki molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kajosmaija molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kangasluomajuha molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT keskinenhelmi molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kupcagnieszka molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kurtentheo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kvashinalexandern molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT laaksonenari molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT lehtipalokatrianne molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT leimingermarkus molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT leppajohannes molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT loukonenville molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT makhmutovvladimir molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT mathotserge molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT mcgrathmatthewj molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT nieminentuomo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT oleniustinja molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT onnelaantti molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT petajatuukka molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT riccobonofrancesco molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT riipinenilona molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT rissanenmatti molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT rondolinda molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT ruuskanentaina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT santosfiliped molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT sarnelanina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT schallhartsimon molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT schnitzhoferralf molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT seinfeldjohnh molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT simonmario molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT sipilamikko molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT stozhkovyuri molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT stratmannfrank molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT tomeantonio molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT trostljasmin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT tsagkogeorgasgeorgios molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT vaattovaarapetri molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT viisanenyrjo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT virtanenannele molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT vrtalaaron molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT wagnerpaule molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT weingartnerernest molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT wexheike molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT williamsonchristina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT wimmerdaniela molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT yepenglin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT ylijuutitaina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT carslawkenneths molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kulmalamarkku molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT curtiusjoachim molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT baltenspergerurs molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT worsnopdouglasr molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT vehkamakihanna molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere AT kirkbyjasper molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere |