Cargando…

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and exten...

Descripción completa

Detalles Bibliográficos
Autores principales: Almeida, João, Schobesberger, Siegfried, Kürten, Andreas, Ortega, Ismael K., Kupiainen-Määttä, Oona, Praplan, Arnaud P., Adamov, Alexey, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, David, André, Dommen, Josef, Donahue, Neil M., Downard, Andrew, Dunne, Eimear, Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Guida, Roberto, Hakala, Jani, Hansel, Armin, Heinritzi, Martin, Henschel, Henning, Jokinen, Tuija, Junninen, Heikki, Kajos, Maija, Kangasluoma, Juha, Keskinen, Helmi, Kupc, Agnieszka, Kurtén, Theo, Kvashin, Alexander N., Laaksonen, Ari, Lehtipalo, Katrianne, Leiminger, Markus, Leppä, Johannes, Loukonen, Ville, Makhmutov, Vladimir, Mathot, Serge, McGrath, Matthew J., Nieminen, Tuomo, Olenius, Tinja, Onnela, Antti, Petäjä, Tuukka, Riccobono, Francesco, Riipinen, Ilona, Rissanen, Matti, Rondo, Linda, Ruuskanen, Taina, Santos, Filipe D., Sarnela, Nina, Schallhart, Simon, Schnitzhofer, Ralf, Seinfeld, John H., Simon, Mario, Sipilä, Mikko, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Tröstl, Jasmin, Tsagkogeorgas, Georgios, Vaattovaara, Petri, Viisanen, Yrjo, Virtanen, Annele, Vrtala, Aron, Wagner, Paul E., Weingartner, Ernest, Wex, Heike, Williamson, Christina, Wimmer, Daniela, Ye, Penglin, Yli-Juuti, Taina, Carslaw, Kenneth S., Kulmala, Markku, Curtius, Joachim, Baltensperger, Urs, Worsnop, Douglas R., Vehkamäki, Hanna, Kirkby, Jasper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449521/
https://www.ncbi.nlm.nih.gov/pubmed/24097350
http://dx.doi.org/10.1038/nature12663
_version_ 1783574649008816128
author Almeida, João
Schobesberger, Siegfried
Kürten, Andreas
Ortega, Ismael K.
Kupiainen-Määttä, Oona
Praplan, Arnaud P.
Adamov, Alexey
Amorim, Antonio
Bianchi, Federico
Breitenlechner, Martin
David, André
Dommen, Josef
Donahue, Neil M.
Downard, Andrew
Dunne, Eimear
Duplissy, Jonathan
Ehrhart, Sebastian
Flagan, Richard C.
Franchin, Alessandro
Guida, Roberto
Hakala, Jani
Hansel, Armin
Heinritzi, Martin
Henschel, Henning
Jokinen, Tuija
Junninen, Heikki
Kajos, Maija
Kangasluoma, Juha
Keskinen, Helmi
Kupc, Agnieszka
Kurtén, Theo
Kvashin, Alexander N.
Laaksonen, Ari
Lehtipalo, Katrianne
Leiminger, Markus
Leppä, Johannes
Loukonen, Ville
Makhmutov, Vladimir
Mathot, Serge
McGrath, Matthew J.
Nieminen, Tuomo
Olenius, Tinja
Onnela, Antti
Petäjä, Tuukka
Riccobono, Francesco
Riipinen, Ilona
Rissanen, Matti
Rondo, Linda
Ruuskanen, Taina
Santos, Filipe D.
Sarnela, Nina
Schallhart, Simon
Schnitzhofer, Ralf
Seinfeld, John H.
Simon, Mario
Sipilä, Mikko
Stozhkov, Yuri
Stratmann, Frank
Tomé, Antonio
Tröstl, Jasmin
Tsagkogeorgas, Georgios
Vaattovaara, Petri
Viisanen, Yrjo
Virtanen, Annele
Vrtala, Aron
Wagner, Paul E.
Weingartner, Ernest
Wex, Heike
Williamson, Christina
Wimmer, Daniela
Ye, Penglin
Yli-Juuti, Taina
Carslaw, Kenneth S.
Kulmala, Markku
Curtius, Joachim
Baltensperger, Urs
Worsnop, Douglas R.
Vehkamäki, Hanna
Kirkby, Jasper
author_facet Almeida, João
Schobesberger, Siegfried
Kürten, Andreas
Ortega, Ismael K.
Kupiainen-Määttä, Oona
Praplan, Arnaud P.
Adamov, Alexey
Amorim, Antonio
Bianchi, Federico
Breitenlechner, Martin
David, André
Dommen, Josef
Donahue, Neil M.
Downard, Andrew
Dunne, Eimear
Duplissy, Jonathan
Ehrhart, Sebastian
Flagan, Richard C.
Franchin, Alessandro
Guida, Roberto
Hakala, Jani
Hansel, Armin
Heinritzi, Martin
Henschel, Henning
Jokinen, Tuija
Junninen, Heikki
Kajos, Maija
Kangasluoma, Juha
Keskinen, Helmi
Kupc, Agnieszka
Kurtén, Theo
Kvashin, Alexander N.
Laaksonen, Ari
Lehtipalo, Katrianne
Leiminger, Markus
Leppä, Johannes
Loukonen, Ville
Makhmutov, Vladimir
Mathot, Serge
McGrath, Matthew J.
Nieminen, Tuomo
Olenius, Tinja
Onnela, Antti
Petäjä, Tuukka
Riccobono, Francesco
Riipinen, Ilona
Rissanen, Matti
Rondo, Linda
Ruuskanen, Taina
Santos, Filipe D.
Sarnela, Nina
Schallhart, Simon
Schnitzhofer, Ralf
Seinfeld, John H.
Simon, Mario
Sipilä, Mikko
Stozhkov, Yuri
Stratmann, Frank
Tomé, Antonio
Tröstl, Jasmin
Tsagkogeorgas, Georgios
Vaattovaara, Petri
Viisanen, Yrjo
Virtanen, Annele
Vrtala, Aron
Wagner, Paul E.
Weingartner, Ernest
Wex, Heike
Williamson, Christina
Wimmer, Daniela
Ye, Penglin
Yli-Juuti, Taina
Carslaw, Kenneth S.
Kulmala, Markku
Curtius, Joachim
Baltensperger, Urs
Worsnop, Douglas R.
Vehkamäki, Hanna
Kirkby, Jasper
author_sort Almeida, João
collection PubMed
description Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4,5,6,7,8,9,10,11,12,13,14,15,16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature12663) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7449521
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74495212020-09-02 Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere Almeida, João Schobesberger, Siegfried Kürten, Andreas Ortega, Ismael K. Kupiainen-Määttä, Oona Praplan, Arnaud P. Adamov, Alexey Amorim, Antonio Bianchi, Federico Breitenlechner, Martin David, André Dommen, Josef Donahue, Neil M. Downard, Andrew Dunne, Eimear Duplissy, Jonathan Ehrhart, Sebastian Flagan, Richard C. Franchin, Alessandro Guida, Roberto Hakala, Jani Hansel, Armin Heinritzi, Martin Henschel, Henning Jokinen, Tuija Junninen, Heikki Kajos, Maija Kangasluoma, Juha Keskinen, Helmi Kupc, Agnieszka Kurtén, Theo Kvashin, Alexander N. Laaksonen, Ari Lehtipalo, Katrianne Leiminger, Markus Leppä, Johannes Loukonen, Ville Makhmutov, Vladimir Mathot, Serge McGrath, Matthew J. Nieminen, Tuomo Olenius, Tinja Onnela, Antti Petäjä, Tuukka Riccobono, Francesco Riipinen, Ilona Rissanen, Matti Rondo, Linda Ruuskanen, Taina Santos, Filipe D. Sarnela, Nina Schallhart, Simon Schnitzhofer, Ralf Seinfeld, John H. Simon, Mario Sipilä, Mikko Stozhkov, Yuri Stratmann, Frank Tomé, Antonio Tröstl, Jasmin Tsagkogeorgas, Georgios Vaattovaara, Petri Viisanen, Yrjo Virtanen, Annele Vrtala, Aron Wagner, Paul E. Weingartner, Ernest Wex, Heike Williamson, Christina Wimmer, Daniela Ye, Penglin Yli-Juuti, Taina Carslaw, Kenneth S. Kulmala, Markku Curtius, Joachim Baltensperger, Urs Worsnop, Douglas R. Vehkamäki, Hanna Kirkby, Jasper Nature Article Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4,5,6,7,8,9,10,11,12,13,14,15,16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature12663) contains supplementary material, which is available to authorized users. Nature Publishing Group UK 2013-10-06 2013 /pmc/articles/PMC7449521/ /pubmed/24097350 http://dx.doi.org/10.1038/nature12663 Text en © The Author(s) 2013 This work is licensed under a Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 Unported licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
spellingShingle Article
Almeida, João
Schobesberger, Siegfried
Kürten, Andreas
Ortega, Ismael K.
Kupiainen-Määttä, Oona
Praplan, Arnaud P.
Adamov, Alexey
Amorim, Antonio
Bianchi, Federico
Breitenlechner, Martin
David, André
Dommen, Josef
Donahue, Neil M.
Downard, Andrew
Dunne, Eimear
Duplissy, Jonathan
Ehrhart, Sebastian
Flagan, Richard C.
Franchin, Alessandro
Guida, Roberto
Hakala, Jani
Hansel, Armin
Heinritzi, Martin
Henschel, Henning
Jokinen, Tuija
Junninen, Heikki
Kajos, Maija
Kangasluoma, Juha
Keskinen, Helmi
Kupc, Agnieszka
Kurtén, Theo
Kvashin, Alexander N.
Laaksonen, Ari
Lehtipalo, Katrianne
Leiminger, Markus
Leppä, Johannes
Loukonen, Ville
Makhmutov, Vladimir
Mathot, Serge
McGrath, Matthew J.
Nieminen, Tuomo
Olenius, Tinja
Onnela, Antti
Petäjä, Tuukka
Riccobono, Francesco
Riipinen, Ilona
Rissanen, Matti
Rondo, Linda
Ruuskanen, Taina
Santos, Filipe D.
Sarnela, Nina
Schallhart, Simon
Schnitzhofer, Ralf
Seinfeld, John H.
Simon, Mario
Sipilä, Mikko
Stozhkov, Yuri
Stratmann, Frank
Tomé, Antonio
Tröstl, Jasmin
Tsagkogeorgas, Georgios
Vaattovaara, Petri
Viisanen, Yrjo
Virtanen, Annele
Vrtala, Aron
Wagner, Paul E.
Weingartner, Ernest
Wex, Heike
Williamson, Christina
Wimmer, Daniela
Ye, Penglin
Yli-Juuti, Taina
Carslaw, Kenneth S.
Kulmala, Markku
Curtius, Joachim
Baltensperger, Urs
Worsnop, Douglas R.
Vehkamäki, Hanna
Kirkby, Jasper
Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title_full Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title_fullStr Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title_full_unstemmed Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title_short Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
title_sort molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449521/
https://www.ncbi.nlm.nih.gov/pubmed/24097350
http://dx.doi.org/10.1038/nature12663
work_keys_str_mv AT almeidajoao molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT schobesbergersiegfried molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kurtenandreas molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT ortegaismaelk molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kupiainenmaattaoona molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT praplanarnaudp molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT adamovalexey molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT amorimantonio molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT bianchifederico molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT breitenlechnermartin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT davidandre molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT dommenjosef molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT donahueneilm molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT downardandrew molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT dunneeimear molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT duplissyjonathan molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT ehrhartsebastian molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT flaganrichardc molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT franchinalessandro molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT guidaroberto molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT hakalajani molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT hanselarmin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT heinritzimartin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT henschelhenning molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT jokinentuija molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT junninenheikki molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kajosmaija molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kangasluomajuha molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT keskinenhelmi molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kupcagnieszka molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kurtentheo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kvashinalexandern molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT laaksonenari molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT lehtipalokatrianne molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT leimingermarkus molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT leppajohannes molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT loukonenville molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT makhmutovvladimir molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT mathotserge molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT mcgrathmatthewj molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT nieminentuomo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT oleniustinja molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT onnelaantti molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT petajatuukka molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT riccobonofrancesco molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT riipinenilona molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT rissanenmatti molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT rondolinda molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT ruuskanentaina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT santosfiliped molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT sarnelanina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT schallhartsimon molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT schnitzhoferralf molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT seinfeldjohnh molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT simonmario molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT sipilamikko molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT stozhkovyuri molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT stratmannfrank molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT tomeantonio molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT trostljasmin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT tsagkogeorgasgeorgios molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT vaattovaarapetri molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT viisanenyrjo molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT virtanenannele molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT vrtalaaron molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT wagnerpaule molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT weingartnerernest molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT wexheike molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT williamsonchristina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT wimmerdaniela molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT yepenglin molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT ylijuutitaina molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT carslawkenneths molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kulmalamarkku molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT curtiusjoachim molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT baltenspergerurs molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT worsnopdouglasr molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT vehkamakihanna molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere
AT kirkbyjasper molecularunderstandingofsulphuricacidamineparticlenucleationintheatmosphere