Cargando…

Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials

Artificial regulation of state transition between photosystem I (PSI) and PSII will be a smart and promising way to improve efficiency of natural photosynthesis. In this work, we found that a synthetic light-harvesting polymer [poly(boron-dipyrromethene-co-fluorene) (PBF)] with green light absorptio...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xin, Zeng, Yue, Tang, Yongyan, Huang, Yiming, Lv, Fengting, Liu, Libing, Wang, Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449672/
https://www.ncbi.nlm.nih.gov/pubmed/32923652
http://dx.doi.org/10.1126/sciadv.abc5237
Descripción
Sumario:Artificial regulation of state transition between photosystem I (PSI) and PSII will be a smart and promising way to improve efficiency of natural photosynthesis. In this work, we found that a synthetic light-harvesting polymer [poly(boron-dipyrromethene-co-fluorene) (PBF)] with green light absorption and far-red emission could improve PSI activity of algae Chlorella pyrenoidosa, followed by further upgrading PSII activity to augment natural photosynthesis. For light-dependent reactions, PBF accelerated photosynthetic electron transfer, and the productions of oxygen, ATP and NADPH were increased by 120, 97, and 76%, respectively. For light-independent reactions, the RuBisCO activity was enhanced by 1.5-fold, while the expression levels of rbcL encoding RuBisCO and prk encoding phosphoribulokinase were up-regulated by 2.6 and 1.5-fold, respectively. Furthermore, PBF could be absorbed by the Arabidopsis thaliana to speed up cell mitosis and enhance photosynthesis. By improving the efficiency of natural photosynthesis, synthetic light-harvesting polymer materials show promising potential applications for biofuel production.