Cargando…
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
Difficulties in interpreting machine learning (ML) models and their predictions limit the practical applicability of and confidence in ML in pharmaceutical research. There is a need for agnostic approaches aiding in the interpretation of ML models regardless of their complexity that is also applicab...
Autores principales: | Rodríguez-Pérez, Raquel, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449951/ https://www.ncbi.nlm.nih.gov/pubmed/32361862 http://dx.doi.org/10.1007/s10822-020-00314-0 |
Ejemplares similares
-
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
por: Feldmann, Christian, et al.
Publicado: (2022) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis
por: Siemers, Friederike Maite, et al.
Publicado: (2023) -
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2021)