Cargando…
Bioconversion of biphenyl to a polyhydroxyalkanoate copolymer by Alcaligenes denitrificans A41
A polyhydroxyalkanoate (PHA) copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], was biosynthesized from biphenyl as the sole carbon source using Alcaligenes (currently Achromobacter) denitrificans A41. This strain is capable of degrading polychlorinated biphenyls (PCBs) and bip...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450020/ https://www.ncbi.nlm.nih.gov/pubmed/32845442 http://dx.doi.org/10.1186/s13568-020-01093-5 |
Sumario: | A polyhydroxyalkanoate (PHA) copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], was biosynthesized from biphenyl as the sole carbon source using Alcaligenes (currently Achromobacter) denitrificans A41. This strain is capable of degrading polychlorinated biphenyls (PCBs) and biphenyl. This proof-of-concept of the conversion of aromatic chemicals such as the environmental pollutant PCBs/biphenyl to eco-friendly products such as biodegradable polyester PHA was inspired by the uncovering of two genes encoding PHA synthases in the A. denitrificans A41 genome. When the carbon/nitrogen (C/N) ratio was set at 21, the cellular P(3HB-co-3HV) content in strain A41 reached its highest value of 10.1% of the cell dry weight (CDW). A two-step cultivation protocol improved the accumulation of P(3HB-co-3HV) by up to 26.2% of the CDW, consisting of 13.0 mol % 3HV when grown on minimum salt medium without nitrogen sources. The highest cellular content of P(3HB-co-3HV) (47.6% of the CDW) was obtained through the two-step cultivation of strain A41 on biphenyl as the sole carbon source. The purified copolymer had ultra-high molecular weight (weight-average molecular weight of 3.5 × 10(6)), as revealed through gel-permeation chromatography. Based on the genomic information related to both polymer synthesis and biphenyl degradation, we finally proposed a metabolic pathway for the production of P(3HB-co-3HV) associated with the degradation of biphenyl by strain A41. [Image: see text] |
---|