Cargando…
Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma
BACKGROUND: Q.Clear is a new Bayesian penalized-likelihood PET reconstruction algorithm. It has been documented that Q.Clear increases the SUVmax values of different malignant lesions. PURPOSE: SUVmax values are crucial for the interpretation of PET/CT images in patients with lymphoma, particularly...
Autores principales: | Wyrzykowski, Michał, Siminiak, Natalia, Kaźmierczak, Maciej, Ruchała, Marek, Czepczyński, Rafał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450027/ https://www.ncbi.nlm.nih.gov/pubmed/32845406 http://dx.doi.org/10.1186/s13550-020-00690-6 |
Ejemplares similares
-
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023) -
Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
por: Texte, Edgar, et al.
Publicado: (2020) -
Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies
por: Ribeiro, Daniela, et al.
Publicado: (2021) -
The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR
por: Tian, Defeng, et al.
Publicado: (2022) -
Impact of the Noise Penalty Factor on Quantification in Bayesian Penalized Likelihood (Q.Clear) Reconstructions of (68)Ga-PSMA PET/CT Scans
por: Rijnsdorp, Sjoerd, et al.
Publicado: (2021)