Cargando…
Deep learning and feature based medication classifications from EEG in a large clinical data set
The amount of freely available human phenotypic data is increasing daily, and yet little is known about the types of inferences or identifying characteristics that could reasonably be drawn from that data using new statistical methods. One data type of particular interest is electroencephalographica...
Autores principales: | Nahmias, David O., Civillico, Eugene F., Kontson, Kimberly L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450080/ https://www.ncbi.nlm.nih.gov/pubmed/32848165 http://dx.doi.org/10.1038/s41598-020-70569-y |
Ejemplares similares
-
Targeted box and blocks test: Normative data and comparison to standard tests
por: Kontson, Kimberly, et al.
Publicado: (2017) -
Quantifying Signal Quality From Unimodal and Multimodal Sources: Application to EEG With Ocular and Motion Artifacts
por: Nahmias, David O., et al.
Publicado: (2021) -
Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use
por: Wang, Sophie L., et al.
Publicado: (2021) -
Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users
por: Wang, Sophie L., et al.
Publicado: (2022) -
EEG Classification of Normal and Alcoholic by Deep Learning
por: Li, Houchi, et al.
Publicado: (2022)