Cargando…
Committee machines—a universal method to deal with non-idealities in memristor-based neural networks
Artificial neural networks are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Consequently, recent years have seen an emergence of research in machine learning hardware that strives to bring memory and computing closer together. A popular approa...
Autores principales: | Joksas, D., Freitas, P., Chai, Z., Ng, W. H., Buckwell, M., Li, C., Zhang, W. D., Xia, Q., Kenyon, A. J., Mehonic, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450095/ https://www.ncbi.nlm.nih.gov/pubmed/32848139 http://dx.doi.org/10.1038/s41467-020-18098-0 |
Ejemplares similares
-
Simulation of Inference Accuracy Using Realistic RRAM Devices
por: Mehonic, Adnan, et al.
Publicado: (2019) -
Memristor-Based Edge Detection for Spike Encoded Pixels
por: Mannion, Daniel J., et al.
Publicado: (2020) -
Nonideality‐Aware Training for Accurate and Robust Low‐Power Memristive Neural Networks
por: Joksas, Dovydas, et al.
Publicado: (2022) -
Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM
por: Buckwell, Mark, et al.
Publicado: (2015) -
Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure
por: Munde, M. S., et al.
Publicado: (2017)