Cargando…

5Gs for crop genetic improvement

Here we propose a 5G breeding approach for bringing much-needed disruptive changes to crop improvement. These 5Gs are Genome assembly, Germplasm characterization, Gene function identification, Genomic breeding (GB), and Gene editing (GE). In our view, it is important to have genome assemblies availa...

Descripción completa

Detalles Bibliográficos
Autores principales: Varshney, Rajeev K, Sinha, Pallavi, Singh, Vikas K, Kumar, Arvind, Zhang, Qifa, Bennetzen, Jeffrey L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Current Biology Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450269/
https://www.ncbi.nlm.nih.gov/pubmed/32005553
http://dx.doi.org/10.1016/j.pbi.2019.12.004
Descripción
Sumario:Here we propose a 5G breeding approach for bringing much-needed disruptive changes to crop improvement. These 5Gs are Genome assembly, Germplasm characterization, Gene function identification, Genomic breeding (GB), and Gene editing (GE). In our view, it is important to have genome assemblies available for each crop and a deep collection of germplasm characterized at sequencing and agronomic levels for identification of marker-trait associations and superior haplotypes. Systems biology and sequencing-based mapping approaches can be used to identify genes involved in pathways leading to the expression of a trait, thereby providing diagnostic markers for target traits. These genes, markers, haplotypes, and genome-wide sequencing data may be utilized in GB and GE methodologies in combination with a rapid cycle breeding strategy.