Cargando…
A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism
BACKGROUND: Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their suitability for applications where there is a lack of...
Autores principales: | Woldaregay, Ashenafi Zebene, Launonen, Ilkka Kalervo, Albers, David, Igual, Jorge, Årsand, Eirik, Hartvigsen, Gunnar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450372/ https://www.ncbi.nlm.nih.gov/pubmed/32784179 http://dx.doi.org/10.2196/18912 |
Ejemplares similares
-
Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System
por: Woldaregay, Ashenafi Zebene, et al.
Publicado: (2020) -
Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes
por: Woldaregay, Ashenafi Zebene, et al.
Publicado: (2019) -
Dataset of motivational factors for using mobile health applications and systems
por: Henriksen, André, et al.
Publicado: (2023) -
Cluster Detection Mechanisms for Syndromic Surveillance Systems: Systematic Review and Framework Development
por: Yeng, Prosper Kandabongee, et al.
Publicado: (2020) -
Telemedicine Services for the Arctic: A Systematic Review
por: Woldaregay, Ashenafi Zebene, et al.
Publicado: (2017)