Cargando…
Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System
BACKGROUND: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that patients increasingly gather data about themse...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450374/ https://www.ncbi.nlm.nih.gov/pubmed/32784178 http://dx.doi.org/10.2196/18911 |
_version_ | 1783574805408120832 |
---|---|
author | Woldaregay, Ashenafi Zebene Launonen, Ilkka Kalervo Årsand, Eirik Albers, David Holubová, Anna Hartvigsen, Gunnar |
author_facet | Woldaregay, Ashenafi Zebene Launonen, Ilkka Kalervo Årsand, Eirik Albers, David Holubová, Anna Hartvigsen, Gunnar |
author_sort | Woldaregay, Ashenafi Zebene |
collection | PubMed |
description | BACKGROUND: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on key parameters of blood glucose dynamics to support the effort toward developing a digital infectious disease detection system. OBJECTIVE: The study aims to retrospectively analyze the effect of infection incidence and pinpoint optimal parameters that can effectively be used as input variables for developing an infection detection algorithm and to provide a general framework regarding how a digital infectious disease detection system can be designed and developed using self-recorded data from people with type 1 diabetes as a secondary source of information. METHODS: We retrospectively analyzed high precision self-recorded data of 10 patient-years captured within the longitudinal records of three people with type 1 diabetes. Obtaining such a rich and large data set from a large number of participants is extremely expensive and difficult to acquire, if not impossible. The data set incorporates blood glucose, insulin, carbohydrate, and self-reported events of infections. We investigated the temporal evolution and probability distribution of the key blood glucose parameters within a specified timeframe (weekly, daily, and hourly). RESULTS: Our analysis demonstrated that upon infection incidence, there is a dramatic shift in the operating point of the individual blood glucose dynamics in all the timeframes (weekly, daily, and hourly), which clearly violates the usual norm of blood glucose dynamics. During regular or normal situations, higher insulin and reduced carbohydrate intake usually results in lower blood glucose levels. However, in all infection cases as opposed to the regular or normal days, blood glucose levels were elevated for a prolonged period despite higher insulin and reduced carbohydrates intake. For instance, compared with the preinfection and postinfection weeks, on average, blood glucose levels were elevated by 6.1% and 16%, insulin (bolus) was increased by 42% and 39.3%, and carbohydrate consumption was reduced by 19% and 28.1%, respectively. CONCLUSIONS: We presented the effect of infection incidence on key parameters of blood glucose dynamics along with the necessary framework to exploit the information for realizing a digital infectious disease detection system. The results demonstrated that compared with regular or normal days, infection incidence substantially alters the norm of blood glucose dynamics, which are quite significant changes that could possibly be detected through personalized modeling, for example, prediction models and anomaly detection algorithms. Generally, we foresee that these findings can benefit the efforts toward building next generation digital infectious disease detection systems and provoke further thoughts in this challenging field. |
format | Online Article Text |
id | pubmed-7450374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-74503742020-08-31 Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System Woldaregay, Ashenafi Zebene Launonen, Ilkka Kalervo Årsand, Eirik Albers, David Holubová, Anna Hartvigsen, Gunnar J Med Internet Res Original Paper BACKGROUND: Type 1 diabetes is a chronic condition of blood glucose metabolic disorder caused by a lack of insulin secretion from pancreas cells. In people with type 1 diabetes, hyperglycemia often occurs upon infection incidences. Despite the fact that patients increasingly gather data about themselves, there are no solid findings that uncover the effect of infection incidences on key parameters of blood glucose dynamics to support the effort toward developing a digital infectious disease detection system. OBJECTIVE: The study aims to retrospectively analyze the effect of infection incidence and pinpoint optimal parameters that can effectively be used as input variables for developing an infection detection algorithm and to provide a general framework regarding how a digital infectious disease detection system can be designed and developed using self-recorded data from people with type 1 diabetes as a secondary source of information. METHODS: We retrospectively analyzed high precision self-recorded data of 10 patient-years captured within the longitudinal records of three people with type 1 diabetes. Obtaining such a rich and large data set from a large number of participants is extremely expensive and difficult to acquire, if not impossible. The data set incorporates blood glucose, insulin, carbohydrate, and self-reported events of infections. We investigated the temporal evolution and probability distribution of the key blood glucose parameters within a specified timeframe (weekly, daily, and hourly). RESULTS: Our analysis demonstrated that upon infection incidence, there is a dramatic shift in the operating point of the individual blood glucose dynamics in all the timeframes (weekly, daily, and hourly), which clearly violates the usual norm of blood glucose dynamics. During regular or normal situations, higher insulin and reduced carbohydrate intake usually results in lower blood glucose levels. However, in all infection cases as opposed to the regular or normal days, blood glucose levels were elevated for a prolonged period despite higher insulin and reduced carbohydrates intake. For instance, compared with the preinfection and postinfection weeks, on average, blood glucose levels were elevated by 6.1% and 16%, insulin (bolus) was increased by 42% and 39.3%, and carbohydrate consumption was reduced by 19% and 28.1%, respectively. CONCLUSIONS: We presented the effect of infection incidence on key parameters of blood glucose dynamics along with the necessary framework to exploit the information for realizing a digital infectious disease detection system. The results demonstrated that compared with regular or normal days, infection incidence substantially alters the norm of blood glucose dynamics, which are quite significant changes that could possibly be detected through personalized modeling, for example, prediction models and anomaly detection algorithms. Generally, we foresee that these findings can benefit the efforts toward building next generation digital infectious disease detection systems and provoke further thoughts in this challenging field. JMIR Publications 2020-08-12 /pmc/articles/PMC7450374/ /pubmed/32784178 http://dx.doi.org/10.2196/18911 Text en ©Ashenafi Zebene Woldaregay, Ilkka Kalervo Launonen, Eirik Årsand, David Albers, Anna Holubová, Gunnar Hartvigsen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.08.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Woldaregay, Ashenafi Zebene Launonen, Ilkka Kalervo Årsand, Eirik Albers, David Holubová, Anna Hartvigsen, Gunnar Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title | Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title_full | Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title_fullStr | Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title_full_unstemmed | Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title_short | Toward Detecting Infection Incidence in People With Type 1 Diabetes Using Self-Recorded Data (Part 1): A Novel Framework for a Personalized Digital Infectious Disease Detection System |
title_sort | toward detecting infection incidence in people with type 1 diabetes using self-recorded data (part 1): a novel framework for a personalized digital infectious disease detection system |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450374/ https://www.ncbi.nlm.nih.gov/pubmed/32784178 http://dx.doi.org/10.2196/18911 |
work_keys_str_mv | AT woldaregayashenafizebene towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem AT launonenilkkakalervo towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem AT arsandeirik towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem AT albersdavid towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem AT holubovaanna towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem AT hartvigsengunnar towarddetectinginfectionincidenceinpeoplewithtype1diabetesusingselfrecordeddatapart1anovelframeworkforapersonalizeddigitalinfectiousdiseasedetectionsystem |