Cargando…
Designing a Clinician-Facing Tool for Using Insights From Patients’ Social Media Activity: Iterative Co-Design Approach
BACKGROUND: Recent research has emphasized the need for accessing information about patients to augment mental health patients’ verbal reports in clinical settings. Although it has not been introduced in clinical settings, computational linguistic analysis on social media has proved it can infer men...
Autores principales: | Yoo, Dong Whi, Birnbaum, Michael L, Van Meter, Anna R, Ali, Asra F, Arenare, Elizabeth, Abowd, Gregory D, De Choudhury, Munmun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450381/ https://www.ncbi.nlm.nih.gov/pubmed/32784180 http://dx.doi.org/10.2196/16969 |
Ejemplares similares
-
Clinician Perspectives on Using Computational Mental Health Insights From Patients’ Social Media Activities: Design and Qualitative Evaluation of a Prototype
por: Yoo, Dong Whi, et al.
Publicado: (2021) -
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020) -
Identifying emerging mental illness utilizing search engine activity: A feasibility study
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
O9.2. IDENTIFYING PSYCHOTIC SYMPTOMS AND PREDICTING RELAPSE THROUGH SOCIAL MEDIA
por: Birnbaum, Michael, et al.
Publicado: (2018) -
A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals
por: Birnbaum, Michael L, et al.
Publicado: (2017)