Cargando…
Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single-Crystalline Substrate
[Image: see text] Metal oxide semiconductor gas sensors have been widely studied for the selective detection of various gases with trace concentrations. The identification of the reaction scheme governing the gas sensing response is crucial for further development; however, the mechanism of ethanol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450640/ https://www.ncbi.nlm.nih.gov/pubmed/32875247 http://dx.doi.org/10.1021/acsomega.0c02750 |
_version_ | 1783574844232695808 |
---|---|
author | Suzuki, Taku T. Ohgaki, Takeshi Adachi, Yutaka Sakaguchi, Isao Nakamura, Minoru Ohashi, Hideyuki Aimi, Akihisa Fujimoto, Kenjiro |
author_facet | Suzuki, Taku T. Ohgaki, Takeshi Adachi, Yutaka Sakaguchi, Isao Nakamura, Minoru Ohashi, Hideyuki Aimi, Akihisa Fujimoto, Kenjiro |
author_sort | Suzuki, Taku T. |
collection | PubMed |
description | [Image: see text] Metal oxide semiconductor gas sensors have been widely studied for the selective detection of various gases with trace concentrations. The identification of the reaction scheme governing the gas sensing response is crucial for further development; however, the mechanism of ethanol (EtOH) gas sensing by ZnO is still controversial despite being one of the most intensively studied target gas and sensing material combinations. In this work, for the first time, the detailed mechanism of EtOH sensing by ZnO is studied by using a bulk single-crystalline substrate, which has a well-defined stoichiometry and atomic arrangement, as the sensing material. The sensing response is substantial on the ZnO substrate even with a millimeter-size thickness, and it becomes larger with resistance of the substrate. The large sensing response is described in terms of the adsorption/desorption of the oxygen species on the substrate surface, namely, oxygen ionosorption. The valence state of the ionosorbed oxygen involved in EtOH sensing is identified to be O(2–) regardless of the temperature. The increase in the sensing response with the temperature is attributed to the enhanced oxidation rate of the EtOH molecule on the surface as analyzed by pulsed-jet temperature-programmed desorption mass spectrometry, which has been newly developed for analyzing surface reactions in simulated working conditions. |
format | Online Article Text |
id | pubmed-7450640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74506402020-08-31 Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single-Crystalline Substrate Suzuki, Taku T. Ohgaki, Takeshi Adachi, Yutaka Sakaguchi, Isao Nakamura, Minoru Ohashi, Hideyuki Aimi, Akihisa Fujimoto, Kenjiro ACS Omega [Image: see text] Metal oxide semiconductor gas sensors have been widely studied for the selective detection of various gases with trace concentrations. The identification of the reaction scheme governing the gas sensing response is crucial for further development; however, the mechanism of ethanol (EtOH) gas sensing by ZnO is still controversial despite being one of the most intensively studied target gas and sensing material combinations. In this work, for the first time, the detailed mechanism of EtOH sensing by ZnO is studied by using a bulk single-crystalline substrate, which has a well-defined stoichiometry and atomic arrangement, as the sensing material. The sensing response is substantial on the ZnO substrate even with a millimeter-size thickness, and it becomes larger with resistance of the substrate. The large sensing response is described in terms of the adsorption/desorption of the oxygen species on the substrate surface, namely, oxygen ionosorption. The valence state of the ionosorbed oxygen involved in EtOH sensing is identified to be O(2–) regardless of the temperature. The increase in the sensing response with the temperature is attributed to the enhanced oxidation rate of the EtOH molecule on the surface as analyzed by pulsed-jet temperature-programmed desorption mass spectrometry, which has been newly developed for analyzing surface reactions in simulated working conditions. American Chemical Society 2020-08-11 /pmc/articles/PMC7450640/ /pubmed/32875247 http://dx.doi.org/10.1021/acsomega.0c02750 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Suzuki, Taku T. Ohgaki, Takeshi Adachi, Yutaka Sakaguchi, Isao Nakamura, Minoru Ohashi, Hideyuki Aimi, Akihisa Fujimoto, Kenjiro Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk Single-Crystalline Substrate |
title | Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk
Single-Crystalline Substrate |
title_full | Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk
Single-Crystalline Substrate |
title_fullStr | Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk
Single-Crystalline Substrate |
title_full_unstemmed | Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk
Single-Crystalline Substrate |
title_short | Ethanol Gas Sensing by a Zn-Terminated ZnO(0001) Bulk
Single-Crystalline Substrate |
title_sort | ethanol gas sensing by a zn-terminated zno(0001) bulk
single-crystalline substrate |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450640/ https://www.ncbi.nlm.nih.gov/pubmed/32875247 http://dx.doi.org/10.1021/acsomega.0c02750 |
work_keys_str_mv | AT suzukitakut ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT ohgakitakeshi ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT adachiyutaka ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT sakaguchiisao ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT nakamuraminoru ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT ohashihideyuki ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT aimiakihisa ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate AT fujimotokenjiro ethanolgassensingbyaznterminatedzno0001bulksinglecrystallinesubstrate |