Cargando…
Middle censoring in the multinomial distribution with applications
In a multinomial set-up with k possible outcomes, we develop estimation under a “middle censoring” paradigm, which is as defined in Jammalamadaka and Mangalam (2003). This problem has many special features because of the inter-dependent probabilities, which we explore here.
Autores principales: | Jammalamadaka, S. Rao, Bapat, Sudeep R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450966/ https://www.ncbi.nlm.nih.gov/pubmed/32873997 http://dx.doi.org/10.1016/j.spl.2020.108916 |
Ejemplares similares
-
Competing risks survival data under middle censoring—An application to COVID-19 pandemic
por: Rehman, H., et al.
Publicado: (2021) -
Multinomial inference on distributed responses in SPM
por: Chumbley, J.R., et al.
Publicado: (2010) -
Genome analysis with the conditional multinomial distribution profile
por: Chang, Guisong, et al.
Publicado: (2011) -
Estimation of the censoring distribution in clinical trials()
por: Jiang, Shu, et al.
Publicado: (2021) -
A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models
por: Li, Mingming, et al.
Publicado: (2020)