Cargando…

Root architecture, rooting profiles and physiological responses of potential slope plants grown on acidic soil

Globally, there has been an increase in the frequency of landslides which is the result of slope failures. The combination of high intensity rainfall and high temperature resulted in the formation of acidic soil which is detrimental to the healthy growth of plants. Proper plant coverage on slopes is...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorairaj, Deivaseeno, Suradi, Muhammad Fahmi, Mansor, Nursyamimi Syafiqah, Osman, Normaniza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451015/
https://www.ncbi.nlm.nih.gov/pubmed/32904129
http://dx.doi.org/10.7717/peerj.9595
Descripción
Sumario:Globally, there has been an increase in the frequency of landslides which is the result of slope failures. The combination of high intensity rainfall and high temperature resulted in the formation of acidic soil which is detrimental to the healthy growth of plants. Proper plant coverage on slopes is a prerequisite to mitigate and rehabilitate the soil. However, not all plant species are able to grow in marginal land. Thus, this study was undertaken to find a suitable slope plant species. We aimed to evaluate the effect of different soil pH on root profiles and growth of three different potential slope plant species namely, Melastoma malabathricum, Hibiscus rosa-sinensis and Syzygium campanulatum. M. malabathricum showed the highest tolerance to acidic soil as it recorded the highest plant height and photosynthetic rate. The root systems of M. malabathricum, H. rosa-sinensis and S. campanulatum were identified as M, VH- and R-types, respectively. The study proposed M. malabathricum which possessed dense and shallow roots to be planted at the toe or top of the slope while H. rosa-sinensis and S. campanulatum to be planted in the middle of a slope. S. campanulatum consistently recorded high root length and root length density across all three types of soil pH while M. malabathricum showed progressive increase in length as the soil pH increased. The root average diameter and root volume of M. malabathricum outperformed the other two plant species irrespective of soil pH. In terms of biomass, M. malabathricum exhibited the highest root and shoot dry weights followed by S. campanulatum. Thus, we propose M. malabathricum to be planted on slopes as a form of soil rehabilitation. The plant species displayed denser rooting, hence a stronger root anchorage that can hold the soil particles together which will be beneficial for slope stabilization.