Cargando…
Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram
BACKGROUND: The coronavirus disease (COVID-19) pandemic is perhaps the greatest global health challenge of the last century. Accompanying this pandemic is a parallel “infodemic,” including the online marketing and sale of unapproved, illegal, and counterfeit COVID-19 health products including testin...
Autores principales: | Mackey, Tim Ken, Li, Jiawei, Purushothaman, Vidya, Nali, Matthew, Shah, Neal, Bardier, Cortni, Cai, Mingxiang, Liang, Bryan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451110/ https://www.ncbi.nlm.nih.gov/pubmed/32750006 http://dx.doi.org/10.2196/20794 |
Ejemplares similares
-
Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study
por: Mackey, Tim, et al.
Publicado: (2020) -
Campus Smoking Policies and Smoking-Related Twitter Posts Originating From California Public Universities: Retrospective Study
por: Yang, Joshua S, et al.
Publicado: (2021) -
Detection of illicit online sales of fentanyls via Twitter
por: Mackey, Tim K., et al.
Publicado: (2017) -
Characterizing alternative and emerging tobacco product transition of use behavior on Twitter
por: Bardier, Cortni, et al.
Publicado: (2021) -
Characterizing Self-Reported Tobacco, Vaping, and Marijuana-Related Tweets Geolocated for California College Campuses
por: Cuomo, Raphael E., et al.
Publicado: (2021)