Cargando…
Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches
BACKGROUND: About 90% of patients who have diabetes suffer from Type 2 DM (T2DM). Many studies suggest using the significant role of lncRNAs to improve the diagnosis of T2DM. Machine learning and Data Mining techniques are tools that can improve the analysis and interpretation or extraction of knowl...
Autores principales: | Kazerouni, Faranak, Bayani, Azadeh, Asadi, Farkhondeh, Saeidi, Leyla, Parvizi, Nasrin, Mansoori, Zahra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451240/ https://www.ncbi.nlm.nih.gov/pubmed/32854616 http://dx.doi.org/10.1186/s12859-020-03719-8 |
Ejemplares similares
-
A group of long noncoding RNAs identified by data mining can predict the prognosis of lung adenocarcinoma
por: Liao, Meijian, et al.
Publicado: (2018) -
Data mining algorithms : explained using R
por: Cichosz, Paweł
Publicado: (2015) -
Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements
por: Saberi‐Karimian, Maryam, et al.
Publicado: (2022) -
Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs
por: Zhang, Qing, et al.
Publicado: (2021) -
Data mining: theories, algorithms, and examples
por: Ye, Nong
Publicado: (2013)