Cargando…
Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback
Being delivered as a low birthweight (LBW) infant is a risk factor for elevated blood pressure and future problems with cardiovascular and cerebellar diseases. Although premature babies are reported to have low numbers of nephrons, some unclear questions remain about the mechanisms underlying elevat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451543/ https://www.ncbi.nlm.nih.gov/pubmed/32853260 http://dx.doi.org/10.1371/journal.pone.0238223 |
_version_ | 1783574999002513408 |
---|---|
author | Nemoto, Takahiro Nakakura, Takashi Kakinuma, Yoshihiko |
author_facet | Nemoto, Takahiro Nakakura, Takashi Kakinuma, Yoshihiko |
author_sort | Nemoto, Takahiro |
collection | PubMed |
description | Being delivered as a low birthweight (LBW) infant is a risk factor for elevated blood pressure and future problems with cardiovascular and cerebellar diseases. Although premature babies are reported to have low numbers of nephrons, some unclear questions remain about the mechanisms underlying elevated blood pressure in full-term LBW infants. We previously reported that glucocorticoids increased miR-449a expression, and increased miR-449a expression suppressed Crhr1 expression and caused negative glucocorticoid feedback. Therefore, we conducted this study to clarify the involvement of pituitary miR-449a in the increase in blood pressure caused by higher glucocorticoids in LBW rats. We generated a fetal low-carbohydrate and calorie-restricted model rat (60% of standard chow), and some individuals showed postnatal growth failure caused by growth hormone receptor expression. Using this model, we examined how a high-fat diet (lard-based 45kcal% fat)-induced mismatch between prenatal and postnatal environments could elevate blood pressure after growth. Although LBW rats fed standard chow had slightly higher blood pressure than control rats, their blood pressure was significantly higher than controls when exposed to a high-fat diet. Observation of glomeruli subjected to periodic acid methenamine silver (PAM) staining showed no difference in number or size. Aortic and cardiac angiotensin II receptor expression was altered with compensatory responses. Blood aldosterone levels were not different between control and LBW rats, but blood corticosterone levels were significantly higher in the latter with high-fat diet exposure. Administration of metyrapone, a steroid synthesis inhibitor, reduced blood pressure to levels comparable to controls. We showed that high-fat diet exposure causes impairment of the pituitary glucocorticoid negative feedback via miR-449a. These results clarify that LBW rats have increased blood pressure due to high glucocorticoid levels when they are exposed to a high-fat diet. These findings suggest a new therapeutic target for hypertension of LBW individuals. |
format | Online Article Text |
id | pubmed-7451543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-74515432020-09-02 Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback Nemoto, Takahiro Nakakura, Takashi Kakinuma, Yoshihiko PLoS One Research Article Being delivered as a low birthweight (LBW) infant is a risk factor for elevated blood pressure and future problems with cardiovascular and cerebellar diseases. Although premature babies are reported to have low numbers of nephrons, some unclear questions remain about the mechanisms underlying elevated blood pressure in full-term LBW infants. We previously reported that glucocorticoids increased miR-449a expression, and increased miR-449a expression suppressed Crhr1 expression and caused negative glucocorticoid feedback. Therefore, we conducted this study to clarify the involvement of pituitary miR-449a in the increase in blood pressure caused by higher glucocorticoids in LBW rats. We generated a fetal low-carbohydrate and calorie-restricted model rat (60% of standard chow), and some individuals showed postnatal growth failure caused by growth hormone receptor expression. Using this model, we examined how a high-fat diet (lard-based 45kcal% fat)-induced mismatch between prenatal and postnatal environments could elevate blood pressure after growth. Although LBW rats fed standard chow had slightly higher blood pressure than control rats, their blood pressure was significantly higher than controls when exposed to a high-fat diet. Observation of glomeruli subjected to periodic acid methenamine silver (PAM) staining showed no difference in number or size. Aortic and cardiac angiotensin II receptor expression was altered with compensatory responses. Blood aldosterone levels were not different between control and LBW rats, but blood corticosterone levels were significantly higher in the latter with high-fat diet exposure. Administration of metyrapone, a steroid synthesis inhibitor, reduced blood pressure to levels comparable to controls. We showed that high-fat diet exposure causes impairment of the pituitary glucocorticoid negative feedback via miR-449a. These results clarify that LBW rats have increased blood pressure due to high glucocorticoid levels when they are exposed to a high-fat diet. These findings suggest a new therapeutic target for hypertension of LBW individuals. Public Library of Science 2020-08-27 /pmc/articles/PMC7451543/ /pubmed/32853260 http://dx.doi.org/10.1371/journal.pone.0238223 Text en © 2020 Nemoto et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nemoto, Takahiro Nakakura, Takashi Kakinuma, Yoshihiko Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title | Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title_full | Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title_fullStr | Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title_full_unstemmed | Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title_short | Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
title_sort | elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451543/ https://www.ncbi.nlm.nih.gov/pubmed/32853260 http://dx.doi.org/10.1371/journal.pone.0238223 |
work_keys_str_mv | AT nemototakahiro elevatedbloodpressureinhighfatdietexposedlowbirthweightratoffspringismostlikelycausedbyelevatedglucocorticoidlevelsduetoabnormalpituitarynegativefeedback AT nakakuratakashi elevatedbloodpressureinhighfatdietexposedlowbirthweightratoffspringismostlikelycausedbyelevatedglucocorticoidlevelsduetoabnormalpituitarynegativefeedback AT kakinumayoshihiko elevatedbloodpressureinhighfatdietexposedlowbirthweightratoffspringismostlikelycausedbyelevatedglucocorticoidlevelsduetoabnormalpituitarynegativefeedback |