Cargando…
Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues
Glyphosate is a commonly used organophosphate herbicide that has an adverse impact on humans, mammals and soil microbial ecosystems. The redundant utilize of glyphosate to control weed growth cause the pollution of the soil environment by this chemical. The discharge of glyphosate in the agricultura...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451736/ https://www.ncbi.nlm.nih.gov/pubmed/32884402 http://dx.doi.org/10.1016/j.sjbs.2020.06.050 |
_version_ | 1783575039301386240 |
---|---|
author | Elarabi, Nagwa I. Abdelhadi, Abdelhadi A. Ahmed, Rasha H. Saleh, Ibrahim Arif, Ibrahim A. Osman, Gamal Ahmed, Dalia S. |
author_facet | Elarabi, Nagwa I. Abdelhadi, Abdelhadi A. Ahmed, Rasha H. Saleh, Ibrahim Arif, Ibrahim A. Osman, Gamal Ahmed, Dalia S. |
author_sort | Elarabi, Nagwa I. |
collection | PubMed |
description | Glyphosate is a commonly used organophosphate herbicide that has an adverse impact on humans, mammals and soil microbial ecosystems. The redundant utilize of glyphosate to control weed growth cause the pollution of the soil environment by this chemical. The discharge of glyphosate in the agricultural drainage can also cause serious environmental damage and water pollution problems. Therefore, it is important to develop methods for enhancing glyphosate degradation in the soil through bioremediation. In this study, thirty bacterial isolates were selected from an agro-industrial zone located in Sadat City of Monufia Governorate, Egypt. The isolates were able to grow in LB medium supplemented with 7.2 mg/ml glyphosate. Ten isolates only had the ability to grow in a medium containing different concentrations of glyphosate (50, 100, 150, 200 and 250 mg/ml). The FACU3 bacterial isolate showed the highest CFU in the different concentrations of glyphosate. The FACU3 isolate was Gram-positive, spore-forming and rod-shape bacteria. Based on API 50 CHB/E medium kit, biochemical properties and 16S rRNA gene sequencing, the FACU3 isolate was identified as Bacillus aryabhattai. Different bioinformatics tools, including multiple sequence alignment (MSA), basic local alignment search tool (BLAST) and primer alignment, were used to design specific primers for goxB gene amplification and isolation. The goxB gene encodes FAD-dependent glyphosate oxidase enzyme that responsible for biodegradation process. The selected primers were successfully used to amplify the goxB gene from Bacillus aryabhattai FACU3. The results indicated that the Bacillus aryabhattai FACU3 can be utilized in glyphosate-contaminated environments for bioremediation. According to our knowledge, this is the first time to isolate of FAD-dependent glyphosate oxidase (goxB) gene from Bacillus aryabhattai. |
format | Online Article Text |
id | pubmed-7451736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-74517362020-09-02 Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues Elarabi, Nagwa I. Abdelhadi, Abdelhadi A. Ahmed, Rasha H. Saleh, Ibrahim Arif, Ibrahim A. Osman, Gamal Ahmed, Dalia S. Saudi J Biol Sci Article Glyphosate is a commonly used organophosphate herbicide that has an adverse impact on humans, mammals and soil microbial ecosystems. The redundant utilize of glyphosate to control weed growth cause the pollution of the soil environment by this chemical. The discharge of glyphosate in the agricultural drainage can also cause serious environmental damage and water pollution problems. Therefore, it is important to develop methods for enhancing glyphosate degradation in the soil through bioremediation. In this study, thirty bacterial isolates were selected from an agro-industrial zone located in Sadat City of Monufia Governorate, Egypt. The isolates were able to grow in LB medium supplemented with 7.2 mg/ml glyphosate. Ten isolates only had the ability to grow in a medium containing different concentrations of glyphosate (50, 100, 150, 200 and 250 mg/ml). The FACU3 bacterial isolate showed the highest CFU in the different concentrations of glyphosate. The FACU3 isolate was Gram-positive, spore-forming and rod-shape bacteria. Based on API 50 CHB/E medium kit, biochemical properties and 16S rRNA gene sequencing, the FACU3 isolate was identified as Bacillus aryabhattai. Different bioinformatics tools, including multiple sequence alignment (MSA), basic local alignment search tool (BLAST) and primer alignment, were used to design specific primers for goxB gene amplification and isolation. The goxB gene encodes FAD-dependent glyphosate oxidase enzyme that responsible for biodegradation process. The selected primers were successfully used to amplify the goxB gene from Bacillus aryabhattai FACU3. The results indicated that the Bacillus aryabhattai FACU3 can be utilized in glyphosate-contaminated environments for bioremediation. According to our knowledge, this is the first time to isolate of FAD-dependent glyphosate oxidase (goxB) gene from Bacillus aryabhattai. Elsevier 2020-09 2020-07-18 /pmc/articles/PMC7451736/ /pubmed/32884402 http://dx.doi.org/10.1016/j.sjbs.2020.06.050 Text en © 2020 Published by Elsevier B.V. on behalf of King Saud University. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Elarabi, Nagwa I. Abdelhadi, Abdelhadi A. Ahmed, Rasha H. Saleh, Ibrahim Arif, Ibrahim A. Osman, Gamal Ahmed, Dalia S. Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title | Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title_full | Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title_fullStr | Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title_full_unstemmed | Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title_short | Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues |
title_sort | bacillus aryabhattai facu: a promising bacterial strain capable of manipulate the glyphosate herbicide residues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451736/ https://www.ncbi.nlm.nih.gov/pubmed/32884402 http://dx.doi.org/10.1016/j.sjbs.2020.06.050 |
work_keys_str_mv | AT elarabinagwai bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT abdelhadiabdelhadia bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT ahmedrashah bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT salehibrahim bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT arifibrahima bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT osmangamal bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues AT ahmeddalias bacillusaryabhattaifacuapromisingbacterialstraincapableofmanipulatetheglyphosateherbicideresidues |