Cargando…

Data sets and trained neural networks for Cu migration barriers

Kinetic Monte Carlo (KMC) is an efficient method for studying diffusion. A limiting factor to the accuracy of KMC is the number of different migration events allowed in the simulation. Each event requires its own migration energy barrier. The calculation of these barriers may be unfeasibly expensive...

Descripción completa

Detalles Bibliográficos
Autores principales: Kimari, Jyri, Jansson, Ville, Vigonski, Simon, Baibuz, Ekaterina, Domingos, Roberto, Zadin, Vahur, Djurabekova, Flyura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451828/
https://www.ncbi.nlm.nih.gov/pubmed/32904182
http://dx.doi.org/10.1016/j.dib.2020.106094
Descripción
Sumario:Kinetic Monte Carlo (KMC) is an efficient method for studying diffusion. A limiting factor to the accuracy of KMC is the number of different migration events allowed in the simulation. Each event requires its own migration energy barrier. The calculation of these barriers may be unfeasibly expensive. In this article we present a data set of migration barriers on for nearest-neighbour jumps on the Cu surfaces, calculated with the nudged elastic band (NEB) method and the tethering force approach. We used the data to train artificial neural networks (ANN) in order to predict the migration barriers for arbitrary nearest-neighbour Cu jumps. The trained ANNs are also included in the article. The data is hosted by the CSC IDA storage service.