Cargando…
Data sets and trained neural networks for Cu migration barriers
Kinetic Monte Carlo (KMC) is an efficient method for studying diffusion. A limiting factor to the accuracy of KMC is the number of different migration events allowed in the simulation. Each event requires its own migration energy barrier. The calculation of these barriers may be unfeasibly expensive...
Autores principales: | Kimari, Jyri, Jansson, Ville, Vigonski, Simon, Baibuz, Ekaterina, Domingos, Roberto, Zadin, Vahur, Djurabekova, Flyura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451828/ https://www.ncbi.nlm.nih.gov/pubmed/32904182 http://dx.doi.org/10.1016/j.dib.2020.106094 |
Ejemplares similares
-
Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps
por: Baibuz, Ekaterina, et al.
Publicado: (2018) -
Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Fe self-diffusion
por: Baibuz, Ekaterina, et al.
Publicado: (2018) -
Mechanism of Spontaneous Surface Modifications on Polycrystalline Cu Due to Electric Fields
por: Kuppart, Kristian, et al.
Publicado: (2021) -
Dynamic coupling between particle-in-cell and atomistic simulations
por: Veske, Mihkel, et al.
Publicado: (2020) -
The effect of heat treatment on the morphology and mobility of Au nanoparticles
por: Oras, Sven, et al.
Publicado: (2020)