Cargando…

Optical wavelength dependence of photoacoustic signal of gold nanofluid

We investigate the optical wavelength dependence of the photoacoustic (PA) signal, detected with bandwidth (BW) in the MHz range, of gold nanospheres (NSs) immersed in water upon illumination with ns laser pulses. We compare the wavelength dependence of the PA signal (within the MHz BW) with the one...

Descripción completa

Detalles Bibliográficos
Autores principales: Gandolfi, Marco, Banfi, Francesco, Glorieux, Christ
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452055/
https://www.ncbi.nlm.nih.gov/pubmed/32874914
http://dx.doi.org/10.1016/j.pacs.2020.100199
Descripción
Sumario:We investigate the optical wavelength dependence of the photoacoustic (PA) signal, detected with bandwidth (BW) in the MHz range, of gold nanospheres (NSs) immersed in water upon illumination with ns laser pulses. We compare the wavelength dependence of the PA signal (within the MHz BW) with the one of the optical absorption coefficient as determined from optical transmission measurements. Thermal boundary conductance (TBC) at the gold-water interface is taken into account, as well as the temperature dependence of the thermal expansion coefficient of water. The effects of NS size and laser pulse duration on the PA signal are also explored. The PA signal is investigated with an opto-thermo-acoustic model considering light absorption in gold NS and in a surrounding water shell.