Cargando…
Latent Factor Modeling of scRNA-Seq Data Uncovers Dysregulated Pathways in Autoimmune Disease Patients
Latent factor modeling applied to single-cell RNA sequencing (scRNA-seq) data is a useful approach to discover gene signatures. However, it is often unclear what methods are best suited for specific tasks and how latent factors should be interpreted. Here, we compare four state-of-the-art methods an...
Autores principales: | Palla, Giovanni, Ferrero, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452208/ https://www.ncbi.nlm.nih.gov/pubmed/32853994 http://dx.doi.org/10.1016/j.isci.2020.101451 |
Ejemplares similares
-
Integration of scRNA-Seq and bulk RNA-Seq uncover perturbed immune cell types and pathways of Kawasaki disease
por: Cao, Naixin, et al.
Publicado: (2023) -
Computational approaches for interpreting scRNA‐seq data
por: Rostom, Raghd, et al.
Publicado: (2017) -
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
Automated methods for cell type annotation on scRNA-seq data
por: Pasquini, Giovanni, et al.
Publicado: (2021)