Cargando…
Development of Tissue Engineered Heart Valves for Percutaneous Transcatheter Delivery in a Fetal Ovine Model
This multidisciplinary work shows the feasibility of replacing the fetal pulmonary valve with a percutaneous, transcatheter, fully biodegradable tissue-engineered heart valve (TEHV), which was studied in vitro through accelerated degradation, mechanical, and hemodynamic testing and in vivo by implan...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452327/ https://www.ncbi.nlm.nih.gov/pubmed/32875171 http://dx.doi.org/10.1016/j.jacbts.2020.06.009 |
Sumario: | This multidisciplinary work shows the feasibility of replacing the fetal pulmonary valve with a percutaneous, transcatheter, fully biodegradable tissue-engineered heart valve (TEHV), which was studied in vitro through accelerated degradation, mechanical, and hemodynamic testing and in vivo by implantation into a fetal lamb. The TEHV exhibited only trivial stenosis and regurgitation in vitro and no stenosis in vivo by echocardiogram. Following implantation, the fetus matured and was delivered at term. Replacing a stenotic fetal valve with a functional TEHV has the potential to interrupt the development of single-ventricle heart disease by restoring proper flow through the heart. |
---|