Cargando…
Tailoring Echo State Networks for Optimal Learning
As one of the most important paradigms of recurrent neural networks, the echo state network (ESN) has been applied to a wide range of fields, from robotics to medicine, finance, and language processing. A key feature of the ESN paradigm is its reservoir—a directed and weighted network of neurons tha...
Autores principales: | Aceituno, Pau Vilimelis, Yan, Gang, Liu, Yang-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452343/ https://www.ncbi.nlm.nih.gov/pubmed/32827856 http://dx.doi.org/10.1016/j.isci.2020.101440 |
Ejemplares similares
-
Bio-inspired, task-free continual learning through activity regularization
por: Lässig, Francesco, et al.
Publicado: (2023) -
Learning cortical hierarchies with temporal Hebbian updates
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2023) -
Spiking time-dependent plasticity leads to efficient coding of predictions
por: Vilimelis Aceituno, Pau, et al.
Publicado: (2019) -
Fusing Swarm Intelligence and Self-Assembly for Optimizing Echo State Networks
por: Martin, Charles E., et al.
Publicado: (2015) -
Deep Echo State Networks in Industrial Applications
por: Dettori, Stefano, et al.
Publicado: (2020)