Cargando…

Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples - A follow-up study

Antibiotics can be detected in manure and digestate samples worldwide. As manure is a frequently used fertilizer, antibiotics are found in soil and leachate samples. Only little is known about the long-term fate of antibiotics in the soil environment. One shortcut is the lack of appropriate monitori...

Descripción completa

Detalles Bibliográficos
Autores principales: Spielmeyer, Astrid, Petri, Madeleine S., Höper, Heinrich, Hamscher, Gerd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452409/
https://www.ncbi.nlm.nih.gov/pubmed/32904245
http://dx.doi.org/10.1016/j.heliyon.2020.e04656
Descripción
Sumario:Antibiotics can be detected in manure and digestate samples worldwide. As manure is a frequently used fertilizer, antibiotics are found in soil and leachate samples. Only little is known about the long-term fate of antibiotics in the soil environment. One shortcut is the lack of appropriate monitoring studies. Here we present the results of an unequalled soil monitoring study over 18 years from an agricultural field site in Lower Saxony (Germany). Sulfonamides and tetracycline are mainly fixed in the upper soil layer. Contents showed a sharp decrease below sampling depth of 30 cm (plough depth). Sulfaguanidine and sulfamethazine (SMZ) were detected down to 90 cm. Water samples taken below the field site revealed the transfer of sulfonamides into leachate. High variances were observed between sampling points emphasizing the need for sampling strategies for environmental studies. In addition, field lysimeters with defined input of sulfonamides enabled a long-term monitoring and mass balance of antibiotic transfer into leachate over 10 years. SMZ showed the highest mobility with concentrations up to 65 ng L(−1). Less than 0.5% of the applied SMZ was transferred into the leachate. Data of lysimeter and field water samples support the theory of a steady state process with a continuous input of sulfonamides such as SMZ into leachate. Soils contaminated with antibiotics can be a long-term source for the input of antibiotic active compounds into deeper soil layers and groundwater.