Cargando…
Paradoxical characterization of Lebesgue nonmeasurable sets
We show that a set [Formula: see text] is nonmeasurable in the sense of Lebesgue if and only if it has a common density point with its complement [Formula: see text]. Moreover, if there exists a density point of both A and [Formula: see text] , then the set of such points has a positive Lebesgue mea...
Autor principal: | Kruk, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452515/ https://www.ncbi.nlm.nih.gov/pubmed/32885069 http://dx.doi.org/10.1016/j.heliyon.2020.e04652 |
Ejemplares similares
-
Nonmeasurable sets and functions
por: Kharazishvili, Alexander
Publicado: (2004) -
Integración Lebesgue
por: Williamson, J. H.
Publicado: (1973) -
The lebesgue integral
por: Burkill, John Charles
Publicado: (1951) -
Lebesgue integration
por: Chae, Soo Bong
Publicado: (1995) -
Lebesgue integral
por: Florescu, Liviu C
Publicado: (2021)