Cargando…

Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications

We prove some theorems on the existence and uniqueness of fixed point for Reich-type contraction mappings and Geraghty-type mappings satisfying rational inequalities in modular metric spaces. Our results include the results of [1] and [2] as special cases. Furthermore, we apply our main results in p...

Descripción completa

Detalles Bibliográficos
Autores principales: Okeke, Godwin Amechi, Francis, Daniel, de la Sen, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452534/
https://www.ncbi.nlm.nih.gov/pubmed/32885086
http://dx.doi.org/10.1016/j.heliyon.2020.e04785
_version_ 1783575180477464576
author Okeke, Godwin Amechi
Francis, Daniel
de la Sen, Manuel
author_facet Okeke, Godwin Amechi
Francis, Daniel
de la Sen, Manuel
author_sort Okeke, Godwin Amechi
collection PubMed
description We prove some theorems on the existence and uniqueness of fixed point for Reich-type contraction mappings and Geraghty-type mappings satisfying rational inequalities in modular metric spaces. Our results include the results of [1] and [2] as special cases. Furthermore, we apply our main results in proving the existence and uniqueness of solution of nonlinear Barbashin-type integrodifferential equation satisfying a given initial value problem in modular metric space [Formula: see text].
format Online
Article
Text
id pubmed-7452534
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-74525342020-09-02 Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications Okeke, Godwin Amechi Francis, Daniel de la Sen, Manuel Heliyon Article We prove some theorems on the existence and uniqueness of fixed point for Reich-type contraction mappings and Geraghty-type mappings satisfying rational inequalities in modular metric spaces. Our results include the results of [1] and [2] as special cases. Furthermore, we apply our main results in proving the existence and uniqueness of solution of nonlinear Barbashin-type integrodifferential equation satisfying a given initial value problem in modular metric space [Formula: see text]. Elsevier 2020-08-26 /pmc/articles/PMC7452534/ /pubmed/32885086 http://dx.doi.org/10.1016/j.heliyon.2020.e04785 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Okeke, Godwin Amechi
Francis, Daniel
de la Sen, Manuel
Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title_full Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title_fullStr Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title_full_unstemmed Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title_short Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
title_sort some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452534/
https://www.ncbi.nlm.nih.gov/pubmed/32885086
http://dx.doi.org/10.1016/j.heliyon.2020.e04785
work_keys_str_mv AT okekegodwinamechi somefixedpointtheoremsformappingssatisfyingrationalinequalityinmodularmetricspaceswithapplications
AT francisdaniel somefixedpointtheoremsformappingssatisfyingrationalinequalityinmodularmetricspaceswithapplications
AT delasenmanuel somefixedpointtheoremsformappingssatisfyingrationalinequalityinmodularmetricspaceswithapplications